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Abstract. Formal methods can only gain widespread use in industrial
software development if they are integrated into software development
techniques, tools, and languages used in practice. A symbiosis of software
testing and verification techniques is a highly desired goal, but at the
current state of the art most available tools are dedicated to just one of
the two tasks: verification or testing. We use the KeY verification system
(developed by the tutorial presenters) to demonstrate our approach in
combining both.

1 What KeY Is

KeY is an approach and a system for the deductive verification of object-oriented
software. It aims for integrating design, implementation, and quality assurance
of software as seamlessly as possible. The intention is to provide a platform that
allows close collaboration between conventional and formal software development
methods.

Recently, version 1.0 of the KeY system has been released in connection
with the KeY book [2]. The KeY system is written in JAVA and runs on all
common architectures. It is available under GPL and can be downloaded from
www.key-project.org.

1.1 Towards Integration of Formal Methods

Formal methods can only gain widespread use in industrial software development
if they are integrated into software development techniques, tools, and languages
used in practice. KeY integrates with (currently two) well-known CASE tools:
Borland Together and the Eclipse IDE. Users can develop a whole software
project, comprised of specifications as well as implementations, entirely within
either of the mentioned CASE tools. The KeY plugin offers then the extended

functionality to generate proof obligations from selected parts of specifications
and verify them with the KeY prover. The core of the KeY system, the KeY
verification component, can also be used as a stand-alone prover, though.

The KeY project is constantly working on techniques to increase the returns
of using formal methods in the industrial setting. Recent efforts in this area
concentrate on applying verification technology to traditional software processes.
These have resulted in development of such approaches as symbolic debugging



and verification-based testing. The latter is the central topic of this tutorial with
Section 3 explaining why and how to utilise synergies between verification and
testing.

1.2 Full Coverage of a Real-world Programming Language

To ensure acceptance among practitioners it is essential to support an industri-
ally relevant programming language as the verification target. We chose JAVA

Card source code [5] because of its importance for security- and safety-critical
applications.

For specification, KeY supports both the OMG standard Object Constraint
Language (OCL) [20] and the Java Modeling Language (JML) [16], which is
increasingly used in the industry. In addition, KeY features a syntax-directed
editor for OCL that can render OCL expressions in several natural languages
while they are being edited.

The KeY prover and its calculus [2] support the full JAVA CARD 2.2.1 lan-
guage. This includes all object-oriented features, JAVA CARD’s transaction mech-
anism, the (finite) JAVA integer types, abrupt termination (local jumps and ex-
ceptions) and even a formal specification (both in OCL [15] and JML1) of the
essential parts of the JAVA CARD API. In addition, some JAVA features that are
not part of JAVA CARD are supported as well: multi-dimensional arrays, JAVA

class initialisation semantics, char and String types. In short, if you have a se-
quential JAVA program without dynamic class loading and floating point types,
then it is (in principle) possible to verify it with KeY.

To a certain degree, KeY allows to customise the assumed semantics of JAVA

CARD. For instance, the user can choose between different semantics of the prim-
itive JAVA integer types. Options are: the mathematical integers (easy to verify,
but not a faithful model of JAVA and, hence, unsound), mathematical integers
with overflow check (sound, reasonably easy to verify, but incomplete for pro-
grams that depend on JAVA’s finite ring semantics), and a faithful semantics of
JAVA integers (sound and complete, but difficult to verify).

2 Foundations of KeY

2.1 The Logic

KeY is a deductive verification system, meaning that its core is a theorem prover,
which proves formulae of a suitable logic. Different deductive verification ap-
proaches vary in the choice of the used logic. The KeY approach employs a logic
called JAVA CARD DL, which is an instance of Dynamic Logic (DL) [12]. DL, like
Hoare Logic [14], has the advantage of transparency with respect to the program
to be verified. This means, programs are neither abstracted away into a less ex-
pressive formalism such as finite-state machines nor are they embedded into a
general purpose higher-order logic. Instead, the logic and the calculus “work”

1 See http://www.cs.ru.nl/~woj/software/software.html.



directly on the JAVA CARD source code. This transparency is extremely helpful
for proving problems that require a certain amount of human interaction.

DL itself is a particular kind of modal logic. Different parts of a formula
are evaluated in different worlds (states), which vary in the interpretation of
functions and predicates. DL differs, however, from standard modal logic in that
the modalities are “indexed” with pieces of program code, describing how to
reach one world (state) from the other. Syntactically, DL extends full first-order
logic with two additional (mix-fix) operators: 〈 . 〉 . (diamond) and [ . ] . (box).
In both cases, the first argument is a program, whereas the second argument is
another DL formula. Under program we understand a sequence of JAVA CARD

statements.
A formula 〈p〉ϕ is true in a state s if execution of p terminates normally when

started in s and results in a state where ϕ is true. As for the other operator, a
formula [p]ϕ is true in a state s if execution of p, when started in s, does either

not terminate normally or results in a state where ϕ is true.2

A frequent pattern of DL formulae is ϕ→ 〈p〉ψ, stating that the program p,
when started from a state where ϕ is true, terminates with ψ being true after-
wards. The formula ϕ → [p]ψ, on the other hand, does not claim termination,
and has exactly the same meaning as the Hoare triple {ψ} p {φ}.

The following is an example of a JAVA CARD DL formula:

o1.f < o2.f → 〈int t=o1.f; o1.f=o2.f; o2.f=t;〉 o2.f < o1.f

It says that, when started in any state where the integer field f of o1 has a smaller
value than o2.f, the statement sequence “int t=o1.f; o1.f=o2.f; o2.f=t;”
terminates, and afterwards o2.f is smaller than o1.f.

The main advantage of DL over Hoare logic is increased expressiveness: one
can express not merely program correctness, but also security properties, cor-
rectness of program transformations, or the validity of assignable clauses. Also,
a pre- or postcondition can contain programs themselves, for instance to express
that a linked structure is acyclic. A full account of JAVA CARD DL is found in
the KeY book [2].

2.2 Verification As Symbolic Execution

The actual verification process in KeY can be viewed as symbolic execution of
source code. Unbounded loops and recursion are either handled by induction over
data structures occurring in the verification target or by specifying loop invari-
ants and variants. Symbolic execution plus induction as a verification paradigm
was originally suggested for informal usage by Burstall [4]. The idea to use Dy-
namic Logic as a basis for mechanising symbolic execution was first realised in
the Karlsruhe Interactive Verifier (KIV) tool [13]. Symbolic execution is very
well suited for interactive verification, because proof progress corresponds to

2 These descriptions have to be generalised when non-deterministic programs are con-
sidered, which is not the case here.



program execution, which makes it easy to interpret intermediate stages in a
proof and failed proof attempts.

Most program logics (e.g., Hoare Logic, wp-calculus) perform substitutions
on formulae to record state changes of a program. In the KeY approach to sym-
bolic execution, the application of substitutions is delayed as much as possible;
instead, the state change effect of a program is made syntactically explicit and
accumulated in a construct called updates. Only when symbolic execution has
completed are updates turned into substitutions. For more details about updates
we refer to [2].

The second foundation of symbolic execution, next to updates, is local pro-

gram transformation. JAVA (Card) is a complex language, and the calculus for
JAVA Card DL performs program transformations to resolve all the complex con-
structs of the language, breaking them down to simple effects that can be moved
into updates. For instance, in the case of try-catch blocks, symbolic execution
proceeds on the “active” statement inside the try block, until normal or abrupt
termination of that block triggers different transformations.

2.3 Automated Proof Search

For automated proof search, a number of predefined strategies are available in
KeY, which are optimised, for example, for symbolically executing programs or
proving pure first-order formulae.

In order to better interleave interactive and automated proof construction,
KeY uses a proof confluent sequent calculus, which means that automated proof
search does not require backtracking over rule applications. The automated
search for quantifier instantiations uses meta variables that are place-holders
for terms. Instead of backtracking over meta-variable instantiations, instantia-
tions are postponed to the point where the whole proof can be closed, and an
incremental global closure check is used. Rule applications requiring particular
instantiations (unifications) of meta variables are handled by attaching unifica-
tion constraints to the resulting formulas [11].

KeY also offers an SMT-LIB backend3 for proving near-propositional proof
goals with external decision procedures.

2.4 User-friendly Graphical User Interface

Despite a high degree of automation (see Sect. 2.3), in many cases there are
significant, non-trivial tasks left for the user. For that purpose, the KeY system
provides a user-friendly graphical user interface (GUI). When proving a property
which is too involved to be handled fully automatically, certain rule applications
need to be performed in an interactive manner, in dialogue with the system. This
is the case when either the automated strategies are exhausted, or else when the
user deliberately performs a strategic step (like a case distinction) manually,
before automated strategies are invoked (again). In the case of human-guided

3 See http://combination.cs.uiowa.edu/smtlib/



rule application, the user is asked to solve tasks like: selecting a proof rule to
be applied, providing instantiations for the proof rule’s schema variables, or
providing instantiations for quantified variables of the logic. These tasks are
supported by dynamic context menus and drag-and-drop.

Other supported forms of interaction in the context of proof construction are
the inspection of proof trees, the pruning of proof branches, stepwise backtrack-
ing, and the triggering of proof reuse.

3 Integrating Verification and Testing

3.1 Why Integrate

Although deductive verification can achieve a level of reliability of programs
that goes beyond most other analysis techniques, there are reasons to augment
fully-symbolic reasoning about programs with execution of concrete tests. We
distinguish two classes of reasons.

The first class involves failing or inapplicable verification. In many common
cases it is impossible to apply verification successfully: be it because no full for-
mal specification is available, because verification is too costly, or simply because
the program at hand proves to be incorrect. Moreover, once a verified program is
(even slightly) changed, existing correctness proofs become invalid and have to
be repeated. We will show how verification technology can be applied also in such
situations by generating test-cases based on symbolic execution of programs [10,
1], and by turning proof search into a systematic bug search [18].

The second class is due to principal shortcomings of formal verification. Sym-
bolic reasoning about programs on the source code level does not take all phe-
nomena into account that can occur during the actual program execution. It
happens routinely that a JAVA CARD application works perfectly on the desk-
top emulator, but behaves erroneously once deployed on the card. This is typi-
cally because the card does not provide a JAVA CARD virtual machine that fully
complies with the semantic model used for the verification. As it is simply too
complex to formally specify and verify compilers, protocols, smart card operat-
ing systems, virtual machine implementations, etc., testing is essential even if
a complete proof has been found. The KeY system can automatically generate
test-cases from proofs and thus simplifies testing after verification.

3.2 Generating Test Cases From Proofs

The KeY tool integrates all necessary steps for generating comprehensive JU-
nit tests for white-box testing. The major steps are (1) computation of path
conditions with verification technology, (2) generation of concrete test data by
constraint solving, and (3) generation of test oracles. The KeY tool can also
be combined with existing black-box tools by outsourcing the second and third
steps and achieving synergy effects between the tools.

In the following, we assume that we have a program under test p (PUT) and
its specification φ, which can be a contract (i.e., a pre- and a postcondition) or



an invariant. Even very simple specifications yield useful test cases: A specifica-
tion of total correctness with a postcondition true is sufficient to generate tests
detecting uncaught exceptions.

3.3 Test-Case Generation by Bounded Symbolic Execution

The proof obligation resulting from the program p and the property φ is input
into the KeY system, which symbolically executes p for up to a fixed number
of steps. This produces a bounded symbolic execution tree, from which feasible
execution paths and branches with the corresponding path and branch conditions
are easily extracted. With the help of external arithmetics decision procedures
like Simplify [9] or Cogent [8], concrete models for these path conditions are
computed. These serve as test inputs for p. The property φ is translated into
a test oracle. Thus, we obtain a test case for every feasible execution path of p
(below the bound). The output of the process is a complete JUnit test case suite
that requires no further modifications.

Let us consider a simple example program:

/*@ publi normal_behavior
@ ensures (

@ \forall int i; 0<=i && i<arr.length; arr[i]<=\result);
@*/publi int getMax(int[] arr){int max = arr[0];for(int i=1; i<arr.length; i++){if(arr[i]<max) max = arr[i];

}return max;

}

The JML specification requires that getMax() terminates normally (without
raising an exception) and the returned result is greater or equal than each of
arr’s entries. This postcondition is translated by KeY into a test oracle, with
universal quantifiers mimicked by loops:private boolean oracle(int result, int[] arr){boolean b = truefor(int i=0; i<arr.length; i++){

b = b && arr[i]<=result;

}return b;

}

Since we made no assumptions on arr.length, the number of loop iterations
is bounded only by Integer.MAX_VALUE. Since the number of feasible execu-
tion paths through the loop is 2arr.length (due to the if statement), it is
technically not possible to create a test satisfying full feasible path coverage.

Nonetheless, we still get useful test cases if we symbolically execute the code
by unrolling the for loop a bounded number of times, for instance just once.



These tests already catch both implementation bugs contained in getMax(). We
now describe this in more detail.

The evaluation of the first statement max = arr[0]; induces the following
case distinction:

(1) arr 6= null ∧ arr.length ≥ 1: The execution proceeds normally. The path
condition on this execution path is feasible.

(2) arr = null: A NullPointerException is raised, but this branch condition
is contradictory to the implicit JML assumption that arguments of a method
are not null, unless declared nullable. KeY recognises this infeasibility and
does not generate a test case.

(3) arr.length < 1: An ArrayIndexOutOfBoundsException is raised. This
branch condition is feasible, and a test generated for this path detects that
the implementation is erroneous, since we required normal termination of
getMax().

The symbolic execution now proceeds on the path (1) with unrolling the for
loop once. After the first iteration of the loop we end up with an open proof
tree containing 4 different feasible execution paths (of which 2 have not yet
terminated) with path conditions:

(4) arr.length < 1: This path is identical to the path (3) above.
(5) arr.length = 1: The loop is never entered, since the loop guard is false.
(6) arr.length > 1 ∧ arr[1] < arr[0]: The guard arr[i]<max of the if

statement is true, and max is set to arr[1]. This violates the postcondition.
(7) arr.length > 1 ∧ arr[1] ≥ arr[0]: The guard of the if statement is

false. The postcondition is also possibly violated on this path, namely in
case arr[1] 6= arr[0].

The four test cases generated from this proof tree exercise getMax() on the
paths (4)–(7). The test for (4) initialises arr with new int[0] and reports an
error due to an exception thrown by getMax(). The test for (5) succeeds, while
the tests for (6) and (7) report failures due to results not accepted by the test
oracle.

3.4 Test-Case Generation from Method Specifications and Loop

Invariants

An obvious deficiency of bounded symbolic execution is that it only explores a
part of all program behaviours. The following example shows the problematic
situation.lass Bar {final int[] arr = new int[16];void foo() {int max = getMax(arr);if(max<0) { A(); }

}

}



We assume a correct implementation of getMax(), which is applied to a fixed-
length buffer. In order to compute a path condition for the execution of the
method A() the unwinding bound for symbolic execution of the loop in getMax()

must be at least 16. This value, in general, is not practicable due to the expo-
nential growth of execution trees. Even worse, the minimal unwinding bound of
a loop for executing a certain branch is generally unknown.

An extension of the bounded approach allows generation of test cases based
on loop invariants and method specifications in combination with symbolic exe-
cution. A loop or a method call is in this case replaced by the invariant resp. the
method specification. With this technique we can compute precise conditions for
entering a branch, even if the path passes through a loop or a method invocation.

For example the desired path condition for executing the method A() in the
code above is: ∀i. 0 ≤ i∧ i < 16 → arr[i] < 0. This path condition is computed
with our approach by using the branch condition max < 0 and the postcondition
of getMax().

3.5 White-box testing by Combining Specification Extraction and

Black-box testing

Existing black-box testing tools [7, 3, 6, 17] can be augmented by KeY to provide
white-box testing capabilities. In this case, the external tool generates the test
inputs and the oracle, while KeY provides information about program structure.

This information is extracted from the symbolic execution tree and input
into the black-box testing tool as a part of the program specification. We call
this process “structure-preserving specification extraction”. The whole approach
is illustrated in Figure 1.

Depending on the methods used for its extraction, the specification may
not cover iterations of loops above a certain limit. However, by combining the
extracted specification with a given requirement specification, black-box testing
methods can generate tests that exercise random amounts of loop iterations
including those not covered by the extracted specification alone. In this way,
it is also possible to achieve a combination of code coverage and data coverage
criteria from both techniques.

Fig. 1. White-box testing as black-box testing with path extraction.



3.6 Proving Incorrectness of Programs

All approaches to find program defects that have been described so far make use
of the symbolic execution and reasoning capabilities of KeY without actually
aiming at the construction of a complete proof. Due to the generality of JAVA

CARD DL, however, the problem can also be approached head-on by simply
proving the incorrectness of a program [18]. This is done by showing a negated
and existentially quantified correctness formula:

∃ pre-state. ¬
(

preconditions → 〈 statements 〉 postconditions
)

(1)

in which statements represents the program in question and ∃ pre-state. exis-
tentially quantifies all variables, class members and array components that can
be read by the program. Formula (1) is true if and only if there is a pre-state
in which the preconditions hold, the program fragment does not terminate, or
terminates and the postconditions do not hold in the final state. With the help of
meta variables (Sect. 2.3) for handling the existential quantifier, symbolic execu-
tion and the proof search strategy mechanism, KeY is quite capable to discharge
such disproving obligations automatically.

Like the discovery of a failing test case, the ability to prove (1) reveals
a program defect.4 The program state for which this happens can be recov-
ered by analysing the proof and extracting the values that were chosen when
eliminating the quantifier in (1). Because only symbolic execution of the pro-
gram is involved, this can even yield descriptions of whole classes of states,
in the style of: “the program fails whenever x is greater than y.” For the
program getMax() on page 6, for instance, KeY can automatically find the
counterexamples arr.length = 1, arr.length = 2 ∧ arr[0] < arr[1] and
arr.length = 3 ∧ arr[0] < arr[1] ∧ arr[0] ≤ arr[2].

Symbolic incorrectness proofs can also discover defects that are inaccessible
to normal testing, for instance the divergence of programs [19]. In order to show
that a program does not terminate (for a particular pre-state), it has to be
proven that no terminal state is reachable. This can be done by synthesising an
invariant that approximates the set of reachable states, and which excludes all
terminal states.
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