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Abstract

Software is vital for modern society. The efficient development of correct and reliable
software is of ever-growing importance. An important technique to achieve this goal
is deductive program verification: the construction of logical proofs that programs
are correct.

In this thesis, we address three important challenges for deductive verification on
its way to a wider deployment in the industry:

1. verification of thread-based concurrent programs
2. correctness management of verification systems
3. change management in the verification process.

These are consistently brought up by practitioners when applying otherwise mature
verification systems. The three challenges correspond to the three parts of this thesis
(not counting the introductory first part, providing technical background on the KeY
verification approach).

In the first part, we define a novel program logic for specifying correctness proper-
ties of object-oriented programs with unbounded thread-based concurrency. We also
present a calculus for the above logic, which allows verifying actual Java programs.
The calculus is based on symbolic execution resulting in its good understandability
for the user. We describe the implementation of the calculus in the KeY verification
system and present a case study.

In the second part, we provide a first systematic survey and appraisal of factors
involved in reliability of formal reasoning. We elucidate the potential and limitations
of self-application of formal methods in this area and give recommendations based
on our experience in design and operation of verification systems.

In the third part, we show how the technique of similarity-based proof reuse can
be applied to the problems of industrial verification life cycle. We address issues (e.g.,
coping with changes in the proof system) that are important in verification practice,
but have been neglected by research so far.






Contents

1 Setting the StAZE .............o.o'eeeeee et 1

11 What Software Verification Needs in Practice ..................... 1

1.2 Contributions . ....uut it e 2

1.3 Typographic Conventions .............c.c.oveuirirninereenenennnn. 4
Part I Background

LWhat You Need to Know about KeY! . ............oooeeuieenieeanni. .. 7

2.1 KeY is a Verification System for JAVA. .. .. ...oooueee i, 7

2.2 Foundations of Dynamic Logic ............cooiuiiiiiiiinn... 9

2.3 Syntax of Java CARD DL oo 10

230 TypeHierarchyl..... ..ot 10

2.3.2 Signatur& ............................................... 1

2.3.3  Syntax of JAVA CARD DL TermS. . . ... nveeenneeanneannnn.. 13

2.3.4 Syntax of Java CARDDL Updates..........cc.ovvvennennnn. 13

2.3.5 Syntax of Java Carp DL FOrmMUIAs. ... .veeeeeeneenenannns 14

2.4 Semantics of Java CARD DL e 15

2.4.1 Models: First-order and Kripke Structures................. 16

2.4.2 Semantics of Java CARD DL Updates ...................... 17

2.4.3 Semantics of JavA CARD DL Terms ...........c.vvuvinnnnn. 20

2.4.4 Semantics of Java CARD DL Formulas ........oovveeenen.. 21

2.4.5 Java Carp-reachable SEALES « v v e e 22

2.5 The Calculus for JAVA CARD DL ... oneeeee e 23

2.5.1 Sequents, Rules, and Proofs .................ccccviini.n. 23

2.5.2  Soundness and Completeness of the Calculus .............. 24

2.5.3 Rule Schemata and Schema Variables ..................... 25

2.5.4 The Active Statement in a Modality ....................... 27

2.5.5 The Essence of Symbolic EXECUtiON « . vv v, 28

2.5.6  Components of the Calculus ...............cooveienn... 29




XII Contents

2.6  Calculus Component It Non-program RuleS ........ccovveeennnn., 30
2.6.1 First-order Rules ............ouuuiuiuiuiiiiiiiiiiinennn.. 30
2.6.2 The Cut Rule and Lemma Introduction. ................... 30
2.6.3 Non-program Rules for Modalities. ....................... 32
2.6.4 Inductioﬁ ............................................... 32
2.7  Calculus Component 2: Reducing Java Program§ .................. 32
2.71  The Basic AssignmentRule.....................oiin.a.. 32
2.72  Rules for Conditionals .................ccoiiiiiiii... 33
2.73  Unwinding Loop;J ....................................... 34
2.74  Replacing Method Calls by their Implementatiod .......... 35
2.75  Instance Creation and Initialization ....................... 35
2.7.6  Handling Abrupt Termination. ........................... 35
2.8 Calculus Component 3} Invariant Rule for LOOPS -+ 36
2.9  Calculus Component 4: Using Method Contracts ................. 37
2.10  Calculus Component 5t Update Simplification .................... 38

‘Part II A Novel Approach to Verification of Multi-threaded Java Program§

3 Introducing MODL—A Multi-threaded Object-oriented Dynamic Logic 43

3.1  Main Idea of the Proposed Logic and Proof Systemj ................ 43
32  Modeling JAVA CONCUITENCY .+ ..ttt eteetet et eteeeaeeeeaaeanns 46
33  Related WorK.....oinini i e 50
4 MODL—A General but Overly Concrete Version ...................... 55
41 SYNtax of MODL ... 55
4.1.1  Threads and Multi-threaded Programs .................... 55

4.1.2  Signature: Heap- and Stack-Allocated Data ................ 56

413 TermsandUpdates ..........c.ovviiiiiniiirinneannannenns 57

4.1.4 Syntax of Program§ ...................................... 57

4.1.5 Program Positions and Thread Conﬁguration§ ............. 59

41,6  TheScheduler...........cooiiiiiiiiiiiiiii e, 61

417 FOrmulas ....ooueoee e 62

42 Semantics Of MODL .. ...uusne e, 63
4.2.1 Semantics of Sequential Programs ........................ 63

4.2.2 _Semantics of Concurrent Programg} ....................... 65

4.2.3  Semantics of FOrMUIAS . .. ... ..voveeneseses e, 66

5 MODL—A More Verification-Friendly Version ...........cccooviiin... 67
5.1 Do Not Enumerate—Describe!‘ .................................. 67
5.2 New Scheduler Formalization ................cccvriiiiinnean... 72
53  Combinatorial Effects of Symmetry Reduction . ................... 75




Contents XIII

6 ACaloulus for MODL ........oooue et 79

6.1 Calculis OVErVIEW. ... nee s e e e 79

6.2 Program Unfolding: Translating Java to MODL) ................... 80

6.3 The Basic Rules of Concurrent Execution ......................... 81

6.4  Treating Locking Primitives ..............coiiiiiiiiiiiiinnenn... 85

6.5  AnInvariant RUE. . .......o.oooee o 86

6.6 Remarks on Calculus Soundness..............coevvniiniinnenn... 87

7 Extensions and RefiN€ments ...................coooeeeeoieeeeeniin., 89

71 Proving Atomicity with INVariants ... .................oeeeeeee... 89

72 Treating Condition Variables .................coooeereuieinin.. 92

7.3 Proving Absence of Data Races and JMM-Safety .................. 97

7.4 Further Extensions and Future Worki............................. 100

leglementation andCaseStudies........................ ...l 105

81  Implementation . .........eiire it inre it ittt 105

8.2 Full functional correctness of java.lang.StringBuffeﬂ ............... 106

............................................................... 13
Part III Must Program Verification Systems and Calculi Be Verified?

9 Ensuring Reliability of Reasoning in Program Verification ............. 119

9.1  Introduction ... ....i.'iint ittt 119

9.2  Clarification of Concepts and Notions . ...............covvvvenn... 120

9.2.1 Dependability and Reliabilityl. .. .......................... 120

9.2.2 Faultsand Failures. ...........cooiiriintiiiiiniannannnnns 121

9.2.3 Ingredients of the Reasoning Process and their Faults ...... 122

9.3 The Problem of Theory Adequacy\ ................................ 123

9.31 TheLack of Formal Semantics ...............coovvvuinn.n. 123

9.3.2 The Problem of Too Strong Theory. .............ooveeer... 124

9.3.3 The Problem of Too Weak Theory. . ...........oveeeeenr... 124

94  Different Ways to Reliability of Reasoning ........................ 125

9.4.1 Conventional Ways to Reliable SOfWAre . .. ovveeeseen . 125

9.4.2 Measures Against Faults in Reasoning System§ ............. 125

9.4.3  Scalability of Fault Removal Approaches. .................. 128

9.4.4 Consequences of Residual Faults. .. ....................... 129

9.5 Finding Faults in Practice ... ........ooeeooeeeoeeesoeeaneanns. 129

9.5.1  The Situation in the KeY Projecd .......................... 129

9.5.2  Reliability and Deduction System Competition§ ........... 130

9.6 RecOMMENdations . ... .....veeoneee e e 131




X1V Contents

Part IV Managing Change in Deductive Program Verification

10 Applying Proof Reuse in the Verification Cyclé ........................ 135
101 Introduction ... ....iuuiee oottt i 135

10.2  The Main Reuse Algorithm . ............... ... ..o in. . 138

10.3 Computing Rule Application Similarityl. . ... ............cooeeev... 141

10.4 Finding Reusable Subproofs ...........ccouiiiiii i, 145

10.5 Implementation and a Short Practical Guide ..o 147

10.6  The Example REVISHEd .. e e 148

10.7  Other Systems and Related Methods .. ............cc.ovveveenn... 150

10.8  Reuse in the Verification Cyclel. .........ooueeeneeeieaae.. 151
10.8.1 'The Case of a Changed Class Hierarchﬂ ................... 151

10.8.2 The Case of a Changed Specification ...................... 152

10.8.3 'The Case of Interactive Proof Search ...................... 152

10.8.4 The Case of Redundant Subproblem§ ...................... 153

10.8.5 The Case of Using Customizable Calculus Modules. . ... . . .. 153

10.8.6 The Case of a Changed Proof System ...................... 154

10.9  ConclUSION.. ... ..\ttt e 155
OWN PUDLCAtIONS - -« ..\ e o e e e e e e 157




List of Tables

2.1 Names of schema variables and their Kinds. ... ...................... 27
4.1 How program variables are modeled ................... 57
51 Multidimensional Catalan numbers Gt oeeee et e 77

6.1 Examples of unfolding JAVA programs ...............c.coviiininn... 81






List of Figures

2.1  Architecture and interfaces of the KeY system/ .......................

2.2 Classical first-order rule; ..........................................

31 Atextualanda graph representation of a multi-threaded programJ e

5.1 Explored thread trajectories in a progranﬂ ...........................
5.2 Symbolic execution trees with and without symmetry reduction . ... ..

6.1 The concurrent symbolic executionrule ............................
6.2 Therule for lock acquiSition .............c.ovuiiiiiiiiiieinnnen.
6.3 Therule forlockrelease .............oouiiiiiiiniii i

6.4 Reliability of reasoning: artifacts and their relation§ ..................

71  Atomicity proof with invariant (1) ............. ... ...
72 Atomicity proof with invariant (2)............o.eiessiiee ..
73 Element removal method from a blocking concurrent queu
74 Element removal method after unfolding ...........................
75  The rule for NOHACAHON .. 'vveee e,
7.6 The rule for <WaitUREI1> () errens e,
77 Code, surprisingly prone to failure under the JIMM ..................
78  JMM-faithful rules for read and Write aCCess ... ..........ooveren...

8.1 Implementation of the SteP rule .. ..........oeeeeereeeeneneennn...
StringBuffer source code (EXCEIPt) ....vuvriiinii i

8.3 StringBuffer source code after unfolding.........................
8.4  Atomicity failure in StringBuffer.................. ..o

9.1 A reasoning reliability ontolo@yl ... ..........ooeeereeeieneann...
9.2 Faults, errors and failires . .. ... .......ooorreeeeese e,

101 Schematic proofs before and after program correction . ..............

10.2 Main reuse and proof construction algorithm/ .......................




XVIIL

List of Figures




Setting the Stage

1.1 What Software Verification Needs in Practice

Software is vital for modern society. The efficient development of correct and reliable
software is of ever-growing importance. An important technique to achieve this goal
is deductive program verification: the construction of logical proofs that programs
are correct. Logic-based technologies for the formal description, construction, anal-
ysis, and validation of software can be expected to complement and partly replace
traditional software engineering methods in the future.

Already, program verification methods have outgrown the area of academic case
studies, and industry is showing serious interest. While the basic ideas of software ver-
ification have been known for a long time, research is still needed in order to achieve
reach and power to assure reliability of object-oriented programs in the industrial
setting.

This thesis presents work towards this goal. In particular, we address three im-
portant challenges for deductive verification on its way to a wider deployment in the
industry:

1. verification of thread-based concurrent programs
2. correctness management of verification systems
3. change management in the verification process.

While there are numerous other challenges in the field (including software and proof
modularization, efficient deduction, proof visualization and counterexample genera-
tion), these are the ones consistently brought up by practitioners when applying oth-
erwise mature verification systems in the industry.

Industrial software practice differs from academic practice in one central aspect:
verification practitioners do not have full control of the setting. In particular, they can-
not dictate the choice of programming language, programming environment (hard-
ware and software) and programming style. Industrial development is characterized
by presence of development cycles, third-party dependencies, and the fact that the
final product indeed may be deployed, often on a variety of different platforms.

We now describe the individual challenges in more detail.
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Verification of multi-threaded programs

Academic research has mostly postponed working on deductive verification of object-
oriented thread-based concurrent programs. At this point, further postponing is no
longer appropriate. Concurrency is probably the single aspect of programming prac-
tice that has gained most importance lately. On the hardware side this trend is fueled
by proliferation of multi-core processors and embedded platforms supporting multi-
threading. On the software side, most modern applications concerned with network-
ing, graphical user interfaces or resource control have concurrent aspects. Indeed,
formal method practitioners now often claim that “all [their] problems involve con-
currency” [Cook, 2007].

Correctness management

Correctness is never an absolute. Simply applying deductive verification does not au-
tomatically lead to a system that never fails. Instead, correctness has to be managed.
Not properly understanding the issues involved leads to wasted resources at best or a
false sense of security at worst. This is particularly true in an environment involving
third-party products, such as hardware, compilers, libraries, etc.

Issues that research has to address in this field are:

« to show how verification works together with other engineering techniques for
achieving high assurance with the minimal use of resources

« to develop, evaluate and compare methods for assuring correctness of verification
calculi and their implementations

o to clarify the guarantees that formal methods provide (or not provide) and their
respective assumptions.

Management of change

All components in the industrial verification process—programs, specifications, and
also the verification systems themselves—undergo constant change. Correctness as-
surances (in our case proofs) constructed with a lot of effort quickly become obsolete
during the development or maintenance cycle. The current state of affairs in the field
resembles programming prior to the invention of modern version control systems.
Formal methods practitioners at NASA state that re-certification costs—with deduc-
tive verification contributing a big part—are the biggest bottleneck in construction of
dependable software [Denney and Fischer, 2005].

Proper change management is crucial for cost-effective production of verified
software. This involves keeping track of correctness assertions as their constituents
evolve (dependency management) and salvaging efforts invested into construction of
their previous versions (proof reuse).

1.2 Contributions

The narrator pronoun “we” in this thesis already refers to pluralis auctoris, the author’s
plural. Still, to avoid ambiguity, I use the singular form in this section.
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Contribution Summary

The main contributions of this thesis are:

o a novel program logic for an object-oriented language with unbounded thread-
based concurrency

« an implemented calculus for full functional verification of a substantial fragment
of multi-threaded Java programs

o afirst implemented calculus for proving Java Memory Model-safety of programs
that takes both locking and volatile variable synchronization into account

o a first comprehensive analysis of the factors involved in reliability of formal rea-
soning in large domain-specific theories and the methods to achieve it

« a novel application of a proof reuse technique developed by me earlier to solve
several important problems in the verification life cycle.

Many of the results presented in this thesis have already been published in workshop
and conference proceedings, or as book chapters. These publications are referred to
in the following, and their full list is included on page[157]

Chapter Breakdown
Part1

Chapter2lprovides standard introductory material on the KeY approach. The content
of this chapter is based to a large extent on the Chapter “Dynamic Logic” in the KeY
book [Beckert et al.,2007b], which I have co-authored. I have reworked, simplified
and compressed the presentation, though, abstracting from details unimportant here.
This chapter also incorporates material I have co-written for [Beckert et al., 2007a].

Part I1

Chapter|[3 gives a quick first glance at the proposed logic and proof system for multi-
threaded Java programs. I discuss which features of Java concurrency are supported
and survey related work.

Chapter [4] defines a novel logic (syntax and model-theoretic semantics) for an
object-oriented language with unbounded thread-based concurrency. The logic has
good “understandability” as it is close to the programmer’s view of the language. On
the semantical side, I show—surprisingly maybe—how scheduling non-determinism
can be modeled adequately by an underspecified deterministic scheduler. An early
form of the logic has been published in [Beckert and Klebanov, 2007a].

Chapter 5 refines the basic version of the logic with a more verification-friendly
scheduler formulation. For this, I have taken the notion of symmetry reduction that is
well-established in model checking and extended it significantly for the use in deduc-
tive verification. The refined scheduler model avoids explicit thread enumeration or
total ordering of many independent events, thus making reasoning about unbounded
multi-threading efficient.
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Chapter[6/presents a calculus for verification of actual concurrent Java programs.
The calculus is based on symbolic execution, which is—to our knowledge—the first
application of this technique to verification of multi-threaded programs. The advan-
tage of symbolic execution (“forward reasoning”) lies in its good understandability
for the user. The calculus has been published in [Beckert and Klebanov, 2007a].

Chapter[7]includes several extensions and refinements of the basic calculus. One
is an experimental extension to verify programs with condition variables (revising
[Beckert and Klebanov, 2007b]). Another is the first implemented synchronization-
complete calculus for establishing safety of real Java programs w.r.t. the Java Memory
Model. Other verification systems available to date either ignore the issue altogether
or are incomplete in this regard (do not consider synchronization edges based on
volatile variables). An early precursor of this work has been published in [Klebanov,
2004]. The chapter concludes with a discussion of future work.

Chapter 8| describes the implementation of the calculus in the KeY system and
presents case studies.

Part 111

Chapter[9/provides a first pragmatic survey and appraisal of all the factors involved in
reliability of formal reasoning. Experience shows that the field suffers from ambigu-
ous terminology, misconceptions, and methodical bias. Though the individual issues
raised may be known to many experts, there has been so far no unified view on the
problem.

I provide such a view and, in particular, elucidate the potential and limitations of
self-application of formal methods. I summarize the situation in the KeY project and
give recommendations based on my experience in design of verification systems.

An early version of this work has been published as [Beckert and Klebanov,|2006].

Part 1V

Chapter 10/ presents a framework for similarity-based proof reuse in deductive soft-
ware verification. While the technique itself, which I have developed earlier (but in-
clude here for completeness), is not part of this thesis’ contribution—its novel appli-
cations in the industrial verification life cycle are. I show how the technique can be
used to make the life of verification engineer easier. I address the issues (e.g., coping
with changes in the proof system) that are important in verification practice, but have
been neglected by research so far.

The new results in this chapter have been published in [Beckert and Klebanov,
2004; Beckert et al., 2005] and in the Chapter “Proof Reuse” of the KeY book [Kle-
banov, 2007] (which I authored).

1.3 Typographic Conventions

In this text we use a number of typesetting conventions. Concrete expressions from
programming languages are written in typewriter font. Mathematical meta sym-
bols are set in math font. Names of calculus rules are set in sans serif font.
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Background






2

What You Need to Know about KeY

This chapter provides the context for the work documented in this thesis and makes
this text mostly self-contained. Details mentioned as irrelevant can be found in the
KeY book [Beckert et al., 2007]. We still hope that even without this primer the subse-
quent chapters are understandable for a reader with a background in formal methods
and a superficial knowledge of the KeY approach.

First, we give a brief overview of the KeY system followed by a not-so-brief tech-
nical background. It begins with a discussion of the main concepts of the Java CarD
Dynamic Logic of KeY. The syntax and semantics of the logic are formally defined in
Sections[2.3]land2.4. Finally, in Section[2.5-2.10, we present the Java Carp DL calculus,
which KeY uses for verification of Java CARD programs.

2.1 KeY is a Verification System for Java

The KeY system is the main software product of the KeY project, a joint effort between
the University of Karlsruhe, Chalmers University of Technology in Géteborg, and the
University of Koblenz. The KeY system is a formal software development tool that
aims to integrate design, implementation, formal specification, and formal verifica-
tion of object-oriented software as seamlessly as possible. At the core of the system is
a deductive verification component that implements a free-variable sequent calculus
for first-order Dynamic Logic for Java.

The architecture of the KeY system is shown in Fig.[2.1l Optional plugins to the
popular Eclipse IDE and to the Borland Together CASE tool suite have been devel-
oped to lower the entry hurdle for users with no or little training in formal methods.
KeY supports several languages for specifying properties of object-oriented models.
Many people working with UML or model-driven development have familiarity with
the specification language OCL (Object Constraint Language), a part of UML 2.0.
Another supported specification language, which enjoys popularity among Java de-
velopers, is JML (Java Modeling Language). KeY can also translate OCL expressions
to natural language (English and German).
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Lightweight Usage of Formal Methods FM expert  Logic xp Wizard

English OCL/UML JML Logic = Taclets
Borland Eclipse
Together CC IDE

OCL/NL _lﬁl_ _lﬁl_ JML

Tool —{ KeY Plugin | [ KeY Plugin Browser

OCL/FOL JML/FOL
Translation Translation

Synthesis of Proof Obligations

Rule Base

KeY Prover >

Figure 2.1. Architecture and interfaces of the KeY system

The target programming language for verification in KeY is Java Carp 2.2.1. KeY is
the only publicly available verification tool that supports the full Java Carp standard
including the persistent/transient memory model of the card devices and the atomic
transactions. Rich specifications of the Java CArRD API are available both in OCL and
JML. Java 1.4 programs that respect the limitations of Java Carp (no floats, no re-
flection, no dynamic class loading) can be verified as well. Verification of (restricted)
multi-threaded programs has become possible with this work.

The system is not a classical verification condition generator (VCG), but a theorem
prover for program logic that combines a variety of automated reasoning techniques.
The KeY prover is distinguished from most other deductive verification systems in
that symbolic execution of programs, first-order reasoning, arithmetic simplification,
external decision procedure calls, and symbolic state simplification are interleaved.
Symbolic execution is typically carried out in a fully automated manner as long as
loops are bounded or an invariant is available.

While we constantly strive to increase the overall degree of automation, user inter-
action remains indispensable in deductive program verification. The main design goal
of the KeY prover is thus a seamless integration of automated and interactive proving.
Efficiency must be measured in terms of user plus prover, not just prover alone. Ac-
cordingly, the strong point of KeY is a combination of a good user interface for proof
state presentation and rule application, a high level of automation, extensibility of the
rule base, and a calculus without backtracking.
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KeY itself is made up of ca. 124,000 lines' of Java code. The standard rule base con-
sists of 1,725 rules that are written in about 15,000 lines of KeY’s “taclet” rule descrip-
tion language. About 1,300 of these formalize the semantics of the Java programming
language. The system has been created by 14 implementors since 1999, who spent a
total of about 30 person years. Version 1.0 of the KeY system has been released in con-
nection with the KeY book [Beckert et al.,[2007]; current version is KeY 1.4. The KeY

tool is available under GPL and can be downloaded from www.key-project.org.

2.2 Foundations of Dynamic Logic

The logical basis of the KeY system’s software verification component is an instance
of Dynamic Logic (DL) [Harel, 1984; Beckert, 2001]. The principle of DL is the for-
mulation of statements about program behavior by integrating programs and formu-
las within a single language. Such a language is constructed by extending some non-
dynamic logic with parameterized modal operators (p) and [p] for every legal pro-
gram p of some programming language. In our case, the non-dynamic base logic is
typed first-order predicate logic, and the programming language is Java Carp. The
programs p within the modal operators are Java CARD statements, and the logic of
KeY is called Java Carp Dynamic Logic or, for short, Java Carp DL.

The operators (modalities) (p) and [p] refer to the final state of p and can be placed
in front of any formula. The formula (p)¢ expresses that the program p terminates in
a state in which ¢ holds, while [p]¢ does not demand termination and expresses that
if p terminates, then ¢ holds in the final state. For example, “when started in a state
where x is zero, x++; terminates in a state where x is one” can in DL be expressed as
x=0—>(x++)(x=1).

Presence of modalities raises an important semantical issue of program determin-
ism. Determinism here means that a program, for the same initial state resp. the same
inputs, always has the same behavior—in particular, the same final state (if it termi-
nates) resp. the same outputs. When we do not (exactly) know what the initial state
resp. the inputs are, we may not know what (exactly) the behavior is, but it is still
deterministic. In particular, we do not consider unknown inputs as a source of non-
determinism.

In contrast, there can be more than one final state if the programming language
contains non-deterministic constructs and a program uses them. The Java Carp lan-
guage is sequential and deterministic, and there is exactly one final state (if p termi-
nates normally, i.e., does not terminate abruptly due to an uncaught exception) or
there is no such state (if p does not terminate or terminates abruptly). We will discuss
determinism of multi-threaded programs later in Chapter[3.

Deduction in DL, and in particular in Java Carp DL is based on symbolic program
execution and simple program transformations (= Sect.2.5.5) and is, thus, close to a
programmer’s understanding of Java.

! Not counting comments. These numbers are based on our estimates and the results of the
SLOCCount tool (www.dwheeler.com/sloccount).


www.key-project.org
www.dwheeler.com/sloccount
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2.3 Syntax of Java Carp DL

We start with the definition of the underlying type hierarchies and the signatures of
Java CArD DL. Then, we define the syntax of Java Carp DL, which consists of terms,
formulas, and a new category of expressions called updates.

2.3.1 Type Hierarchy

The type system of the KeY logic is designed to match the Java type system. In Java,
there are two type concepts that should not be confused:

1. Every object created during the execution of a Java program has a dynamic type.
If an object is created with the expression new C(...), then C is the dynamic
type of the newly created object. The dynamic type of an object is fixed from its
creation until it is garbage collected. The dynamic type of an object can never be
an interface type or an abstract class type.

2. Every expression occurring in a Java program has a static type. The dynamic type
of an object that results from evaluating an expression is always a subtype of the
static type of that expression. In contrast to dynamic types, static types can also
be abstract class types or interface types.

This distinction is reflected in the logic by assigning static types to expressions (terms)
and dynamic types to their values (domain elements). The logic also includes type casts
(changing the static type of a term) and type predicates (checking the dynamic type of
a term) in order to reason about inheritance and polymorphism. These operators are
not important for this work, though.

The notion of a type hierarchy, groups all the relevant information about types and
their subtyping relationships.

Definition 2.1. A type hierarchy is a quadruple (T, T4, T,, <) of

« a finite set of static types T,

« a finite set of dynamic types Ty,

« a finite set of abstract types T,, and
o a subtype relationc on T,

such that

e T=T,UT,

o There is an empty type L€ T, and a universal type Te 1.

« C is a reflexive partial order on 7,

o LCACT forall AeT.

o T is closed under greatest lower bounds w.r.t. . We write A n B for the greatest
lower bound of A and B and call it the intersection type of A and B. The existence
of A B also guarantees the existence of the least upper bound A L B of A and B,
called the union type of A and B.

« Every non-empty abstract type AeT, ~ {1} has a non-abstract subtype: Be T,
with BEA.
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We say that A is a subtype of B if At B. The set of non-empty static types is denoted
by T,=T ~ {1} <

Note 2.2. We are, of course, only interested in type hierarchies that are “useful”. The
KeY system automatically populates the type hierarchy with the types relevant for the
program(s) being verified. For instance, it is ensured that:

1. Ae T, for all interface and abstract class types A declared in or imported into p.

2. Ae Ty for all non-abstract class types A declared in or imported into p.

3. Cc Diff Cisimplicitly or explicitly declared as a subtype of D (using the keywords
extends or implements), for all (abstract) class or interface types C, D declared
in or imported into p.

4. the type hierarchies contain appropriate array types.

The type hierarchies also always contain the types such as boolean, the root reference
type Object, and the type Null, which is a subtype of all reference types. Finally, they
contain several integer types, including both the range-limited types of Java and the
infinite integer type Z. <

Most of the notions defined in the remainder of this chapter depend on some type
hierarchy. In order to avoid cluttering the notation, we assume that a certain fixed type
hierarchy (T, T, T,, £) is given, to which all later definitions refer.

2.3.2 Signature

We now define the set of symbols that the language Java Carp DL consists of. In con-
trast to first-order signatures, we have two kinds of function and predicate symbols:
rigid and non-rigid symbols. Consequently, the set of function symbols is divided into
two disjoint subsets FSym and FSym . of rigid and non-rigid functions, respectively
(the same applies to the set of predicate symbols). Intuitively, rigid symbols have the
same meaning in all program states (e.g., the addition on integers or the equality pred-
icate), whereas the meaning of non-rigid symbols may differ from state to state. Non-
rigid symbols are used to model program variables such as (local) variables, attributes,
and arrays outside of modalities; i.e., non-rigid symbols represent program variables
as terms in the logic. Program variables can thus not be bound by quantifiers—in
contrast to logical variables. Note that in classical DL there is no distinction between
logical variables and program variables (non-rigid constants).

Definition 2.3 (Java CArD DL signature). A Java CArD DL signature (for a given type
hierarchy) is a tuple
X=(VSym, FSym ,FSym, ,PSym ,PSym )

nr’
consisting of

« a set VSym of variables
« disjoint sets FSym, of rigid function symbols and FSym, . of non-rigid function
symbols such that together FSym =FSym U FSym
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« disjoint sets PSym _ of rigid predicate symbols and PSym . of non-rigid predicate
symbols such that together PSym =PSym_ U PSym,,,
« a typing function «,

such that?

« a(v)eT, forall veVSym,

e a(f)eT; x T, forall feFSym, and

« a(p)e T, forall pePSym.

o There is a function symbol (A)€FSym with a((A))=((T),A) for any AeT,,
called the cast to type A.

« There is a predicate symbol =€ PSym with a(=)=(T, T).

« There is a predicate symbol EA € PSym with a(EA) =(T) for any A€ T, called the
type predicate for type A.

We use the following notations:

o v:Afor a(v)=A4,
o fiAy, ..., Ay—>Afora(f)=((A},...,A,),A),and
o prAy, .. Ay fora(p)=(Ay,..., Ap).

A constant symbol is a function symbol ¢ with a(c)=((), A) for some type A. <

Note 2.4 (Symbols contained in the signature). To have a logic useful vor verification,
we expect that the signature always contains certain predefined symbols. These are typ-
ically operators of common data types. For instance, we require that a Java Carp DL
signature contains constants 0, 1, . . . representing the integer numbers, function sym-
bols for arithmetical operations (addition, subtraction, etc.), and the typical ordering
predicates on integers. A full list of predefined symbols for Java CArp DL is given
in [Beckert et al., 2007].

Furthermore, the KeY system automatically populates the signature with the sym-
bols needed to model program variables in a given program p:

1. The predefined non-rigid array access function symbol [ 1:(T,Z—T)€FSym .
2. For all local variables and static field declarations “A id;” in p:

a) If Ais not an array type, then id: AeFSym, .

b) If A=A[ ]" is an array type, then id: (A'[ ]")eFSym,, .
3. For all non-static field declarations “A id;” in a class C in p:

a) If A is not an array type, then id: (C—A)€FSym, .

b) If A=A[ ]" is an array type, then id: (C—A'[ ]") eFSym,,,. <

In contrast to first-order logic, the definition of terms and formulas (and also up-
dates) in Java CarD DL cannot be done separately, since their definitions are mutually
recursive. For example, a formula may contain terms, which may contain updates.
Updates in turn may contain formulas (“quantified updates”). Nevertheless, in order
to improve readability we give separate definitions of updates, terms, and formulas in

% We use the standard notation A* to denote the set of (possibly empty) sequences of elements
of A.
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the following. Also, in order to avoid cluttering the notation, we assume that a certain
fixed signature (VSym, FSym ,FSym, ,PSym ,PSym ,«) w.rt. a type hierarchy is
given, to which later definitions of this chapter refer.

2.3.3 Syntax of Java Carp DL Terms

Definition 2.5 (Terms of Java Carp DL). The system {Termss }ac7 of sets of terms
of static type A is inductively defined as the smallest system of sets such that:

o x € Terms, for all variables x:A e VSym;

o f(t,...,ty)€eTerms, for all function symbols f:A;,...,A,—~A in FSym and
terms ¢; € Terms, with AlcA; (1<i<n);

o (if ¢ then t; else t;)eTerms, for all ¢ € Formulas (= Def. and all terms
teTermsy,, t,€ Terms, with A=A; U Ay;

o {u} teTerms, for all updates u e Updates (= Def.[2.6) and all terms t€ Terms,.

In the style of Java CARD syntax we often write ¢. f instead of f(¢) and a[i] instead of
[1(a,i). <

Terms in Java CArD DL play the same role as in first-order logic, i.e., they denote
elements of the domain. The syntactical difference to first-order logic is the existence
of terms of the form (if ¢ then # else t,) (which could be defined for first-order
logic as well). Informally, if ¢ holds, a conditional term (if ¢ then ¢ else t,) denotes
the domain element #; evaluates to. Otherwise, if ¢ does not hold, f, is evaluated.

Terms can be prefixed by updates, which we define next.

2.3.4 Syntax of Java Carp DL Updates

We now introduce an additional syntactic category called updates [Beckert, 2001].
Syntactic updates can be seen as a language for describing state transitions. Evaluating
{loc:=val}¢ in some state is equivalent to evaluating ¢ in a modified state where loc
evaluates to val. The difference between updates and assignments is that the syntax of
updates is quite restricted, making analysis and simplification of state change effects
easier and efficient. Updates (together with case distinctions) can be seen as a normal
form for programs and, indeed, the idea of our calculus is to stepwise transform a pro-
gram to be verified into a sequence of updates, which are then simplified and applied
to first-order formulas.

Definition 2.6 (Syntactic updates of Java Carp DL). The set Updates of syntactic
updates is inductively defined as the smallest set such that:

Function update (f(#,...,t,):=t)€Updates if f(#,...,t,)€Terms, (= Def.[2.5)
with feFSym and teTermsys such that A'c A;

Sequential update (u; ;u,) € Updates if uy, u, € Updates;

Parallel update (u || u,) € Updates if uy, u, € Updates;

? Note that [] is a normal function symbol declared in the signature.
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Quantified update (for x; ¢; u) € Updates if ue Updates, x € VSym, and ¢ € Formulas
(= Def.2.8);
Update application ({u;}u;)e Updates if uy, u, € Updates. <

In both sequential and parallel* updates, a later sub-update overrides an earlier
one. The difference however is that with sequential updates the evaluation of the sec-
ond sub-update is affected by the evaluation of the first one. This is not the case for
parallel updates, which are evaluated simultaneously.

Example 2.7 Consider the updates
ci=c+1;c:=c+2

and
ci=c+1|c:=c+2

where ¢ is a non-rigid constant. Evaluating these updates in a state satisfying c=0
results in a state satisfying
c=3

in the first case resp.
in the second case. <

2.3.5 Syntax of Java Carp DL Formulas

Java Carp DL formulas can contain real Java code (sequence of statements). We as-
sume that this sequence is to be understood as part of a program (set of class decla-
rations), not appearing in the formula. The background program must furthermore
satisfy certain sanity constraints (syntax correctness, etc.), which we do not show here.
These constraints do not pose a real restriction.

Now we can define the set of Java Carp DL formulas:

Definition 2.8 (Formulas of Java Carp DL). The set Formulas of Java CArp DL for-
mulas is inductively defined as the smallest set such that:

e R(ty,...,ty) € Formulas for all predicate symbols R: A, ..., A, €PSym and terms
tieTermsy (= Def.[2.5) with AicA; (1<i<n),

o true, falsee Formulas,

o=, (¢V ), (dAY), (d—v), (¢p<— )€ Formulas for all ¢, e Formulas,

o Yx.¢, Ix.¢p e Formulas for all ¢ € Formulas and all variables x € VSym,

o {u} ¢ e Formulas for all ¢ € Formulas and u € Updates (= Def.[2.6),

o (p)¢, [p]l¢ € Formulas  for all ¢€Formulas and any legal sequence p of Java
Carp DL program statements.

In the following we often abbreviate formulas of the form (¢ — ) A (¢ — &) by
if ¢ then y else &. <

* It should be noted that “parallel” updates are not related to concurrency.
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Example 2.9. Given an appropriate type hierarchy and signature, the following are
Java Carp DL formulas:

{c:=0}(c=0) a formula with an update
({c:=0}c)=c a formula containing a term with an update
(int i=0; v=1i;)(v=0) a formula with a program-containing modal opera-

tor (diamond)

[while (true){}]false a formula with a box modal operator
X<y —> (x++;y++; )x<y a diamond formula expressing a pre- and a postcon-
dition <

Note 2.10. In program verification, one is usually interested in proving that the pro-
gram under consideration satisfies some property for all possible input values. Since,
by definition, terms (except those declared as static fields) and in particular logical
variables, i.e., variables from the set VSym, may not occur within modal operators, it
can be a bit tricky to express such properties.

The canonical way to express the desired property is to bind the program variable
to a quantified logical variable via an update:

Vn.{v:i=n}({ ArrayList al=new ArrayList();
v=al.inc(v);)(v=n+1)) .

2.4 Semantics of Java Carp DL

The syntax of Java Carp DL extends the syntax of first-order logic with updates and
modalities. On the semantic level this is reflected by the fact that, instead of one first-
order model, we now have an (infinite) set of such models representing different pro-
gram states.

Our semantics of Java Carp DL is based on so-called Kripke structures, which are
commonly used to define the semantics of modal logics. In our case a Kripke structure
consists of

« an (infinite) set of states S. The states are first-order structures, providing inter-
pretations of functions (including program variables) and predicates.

« a program input/output relation p fixing the meaning of programs occurring in
modalities. This relation is dictated by the semantics of our programming lan-

guage.
Analogously to the syntax definition, the semantics of Java Carp DL updates,

terms, and formulas is mutually recursive. For better readability we still give separate
definitions for the semantics of update, terms, and formulas, respectively.
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2.4.1 Models: First-order and Kripke Structures

Definition 2.11 (First-order structure). A first-order structure is a triple (D, 8, T) of

« a domain D,
o a dynamic type function §: D— T, and
« an interpretation 1,

such that, if we define the set of all domain elements that “fit” the type A
D*={deD|s(d)cA} ,

it holds that

« D% is non-empty for all Ae Ty,
o forany f:A;,...,A, > AeFSym, 7yields a function

1f): D" x...x D = D* |

o forany p:Aj,..., A, €PSym, 1 yields a subset
1Up)c DY x - x DA,

« for type casts, 1((A))(x)=x if §(x)c A, otherwise 7((A))(x) is an arbitrary but
fixed® element of D#, and

« for equality, 1(=)={(d,d)|d e D},

« for type predicates, T(EA) = DA. <

First-order structures are not quite sufficient to give a meaning to an arbitrary
first-order term or formula: they say nothing about the variables. For this, we intro-
duce the notion of a variable assignment.

Definition 2.12 (Variable assignment). Given a first-order structure (D, 8, 1), a vari-
able assignment is a function f: VSym — D, such that

B(x)eD* forall x:AeVSym .

We also define the modification B2 of a variable assignment f3 for any variable x:A and
any domain element d € D* by:

d if y=x
B(y) otherwise. <

ﬁ,‘f(y)={

> The chosen element may be different for different arguments, i.e., if x # y, then 7((A))(x) #
1((A))(y) is allowed.
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Definition 2.13 (Java Carp DL Kripke structure). A Java Carp DL Kripke struc-
ture K is a pair (S, p). S is the set of first-order structures over the given signature X,
which serve as program states. p is the transition relation on S, interpreting programs:
p(p)cS?. The program relation p is, for all states s;, s, €S and any legal sequence p of
Java Carp DL program statements, defined by:

(s1,82)€p(p)
iff

p started in s;in a static context terminates normally in s,
according to the Java language specification [Gosling et al., 2000].

S must also satisfy the following side conditions:

1. Rigid function and predicate symbols have a fixed interpretation for all states,
while the interpretation of non-rigid symbols may differ from state to state.

2. The dynamic type function 9 is the same for all states.

3. All states have the same domain D (“constant domain assumption”). We refer
to D as the domain of K.

4. The domain D must satisfy certain sanity properties not detailed here. In partic-
ular, the domain contains exactly the two elements ¢t and ff with dynamic type
boolean and null as the only element with dynamic type Null. Moreover, we re-
quire that for each dynamic subtype A of type Object (except type Null) there
is a countably infinite number of domain elements representing the Java CarD
objects of dynamic type A.

5. We demand that the set S of states of any Kripke structure consists of all first-
order structures satisfying the above restrictions.

Furthermore, all Java Carp DL Kripke structure must interpret certain function and
predicate symbols that we have distinguished as predefined (= Note[2.4) in a prede-
fined way. <

2.4.2 Semantics of Java Carp DL Updates

Similar to the first-order case we inductively define a valuation function val, assign-
ing meaning to updates, terms, and formulas. Since non-rigid function and predicate
symbols can have different meanings in different states, the valuation function is pa-
rameterized with a Java Carp DL state, i.e., for each state s in S, there is a separate
valuation function.

The intuitive meaning of updates is that the term or formula following the update
is to be evaluated not in the current state but in the state described by the update. To
be more precise, updates do not describe a state completely, but merely the difference
between the current state and the target state. As we see later this is similar to the

® The semantics of each predefined symbol can be constrained completely or only partially.
Such constraints are typically expressed as axioms, together with symbol declaration. An ex-
ample of a partially constrained predefined function in Java Carp DL is division on integers.
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semantics of programs contained in modal operators and indeed updates are used to
describe the effect of programs.

In parallel updates u; ||u; (as well as in quantified updates) clashes can occur,
where u; and u; simultaneously modify a non-rigid function f for the same argu-
ments in an inconsistent way, i.e., by assigning it different values. To handle this prob-
lem, we use a last-win semantics, i.e., the update that syntactically occurs last dom-
inates earlier ones. In the more general situation of quantified (unbounded parallel)
updates for x; ¢; u, we assume that a fixed well-ordering < on the universe D ex-
ists (i.e., a total ordering such that every non-empty subset Dy, €D has a least ele-
ment min<(Dy,p)). The parallel application of unbounded sets of updates can then
be well-ordered as well, and clashes are resolved by giving precedence to the update
with the smallest value of x.

Asevery set can be well-ordered [Zermelo, 1904], this does not restrict the range of
possible domains. The particular order imposed on the domain of a Kripke structure
is a parameter that can be chosen freely depending on the problem. The KeY system
implements a certain “natural” order, which we do not describe here (but see [Beckert
et al.,|2007]).

The semantics of applying an update to a given Java Carp DL state (D, 8, 7) is
defined as a new state (D, §, 7') that differs only in the interpretation of the updated
function, and this only for the arguments specified in the update. But before we give
the exact definition, we introduce semantic updates and discuss their consistency.

Definition 2.14 (Semantic update). A semantic updateisatriple (f,(dy,...,d,),d)
such that

. f:AIS' . .,An —>AEFSymm,
o d;e D4 (1<i<n),and
odE@A . <

Since updates in general modify more than one location (a location is a pair
(f,(dy,...,dy))), we define sets of consistent semantic updates.

Definition 2.15 (Consistent semantic updates). A set CU of semantic updates is
called consistent if for all (f, (dy,...,dn),d),(f',(d],...,d),),d")eCU,

d=d"if f=f",n=m, and d;=d; (1<i<n) .
Let C'U denote the set of consistent semantic updates. <

As we see in Def.[2.17] a syntactic update describes the modification of a state s
as a set CU of consistent semantic updates. In order to obtain the state in which the
terms, formulas, or updates following an update u are evaluated, CU is applied to s
yielding a state s'.

Definition 2.16 (Application of semantic updates). Let s=(‘D, 8, 7) be a first-order
structure. For any set CU € CU of consistent semantics updates, the application result
CU(s) is defined as the structure (D', §’, T') with
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D' =D
8 =9
7’(f)(d1,...,dn):{d if (f,(dy, ..., dy),d)eCU

1(f)(di,...,d,) otherwise

forall f:Ay,...,A,~AeFSym, and d;e D" (1<i<n). <

Intuitively, a set CU of consistent semantic updates modifies the interpretation
of s for the locations that are contained in CU. The consistency condition in Def.[2.15
guarantees that the interpretation function 7’ in Def.[2.16 is well-defined.

Definition 2.17 (Semantics of Java CaArp DL updates). Let K=(S, p) be a Kripke
structure of Java Carp DL with the domain ordered by a total order < (explained
above), and let 5 be a variable assignment.

For every state s= (D, §, T) €, the valuation function val, : Updates - C'U for up-
dates is inductively defined by

evalg g (f(tis... s ta)=t)={(f> (dr>...,dn),d)} where

d,’ = Vals,ﬁ(ti) (lﬁiﬁl’l)
d= Vals,ﬁ(l’) s

o vals g(ur3uz) = (U v Uy) N C where

Uy = valg g (1)
Uz = Valsl)p(uz) with S’zvals)ﬁ(ul)(S)

C={(f.(d1,....dn),d)| (f,(dy,...,dy),d)eU; and
(f.(dy,....dy),d")eU, forsome d'#d} ,

o valg g (11 ||u2) = (Ur U Uy) \ C where

Uy = valy g (1)
U2 = vals,ﬁ(uz)

C={(f(dy,....dn),d)| (f,(du, ,Zn

,d)eU; and
(f,(ds,..., d

)
n),d )eU, forsome d' #d} ,

o val; g(for x; ¢; u) =U where

U={(f,(di,....dn),d)| ((f.(ds,...,d,),d),a)edom for some ae D*
and bfaforall ((f,(ds,....d,),d"),b)edom}
with dom=|_J(val; g (1) x {a}), and x: A,

aeD*

B¢

o valg g ({w1} uy) =valy g(uy) with s"=val g (u1)(s).

For an update u without free variables we simply write val, () since val g(u) is in-
dependent of 8. <
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Example 2.18. Consider the quantified update
forx; x=0vx=1 h(x):=0 .

It updates two different locations, so there is no clash. The result of applying this up-
date is a state satisfying #(0)=0 and k(1) =0.
Now consider the update

forx; x=0vx=1h(0):=5-x .

It attempts to simultaneously assign the values 5 and 4 to the same location h(0). Let’s
assume that x ranges over the positive integers, which allows us to choose the natural
“less than or equal” ordering relation < on the relevant part of the domain. Since 0<1,
we give preference to the update binding x to zero, and the result of applying the
quantified update is a state satisfying h(0)=5. <

2.4.3 Semantics of Java Carp DL Terms

The valuation function for Java Carp DL terms is defined analogously to the one for
first-order terms, though depending on the Java Carp DL state.

Definition 2.19 (Semantics of Java Carp DL terms). Let K= (S, p) be a Kripke struc-
ture of Java Carp DL, and let 3 be a variable assignment.

For every state s= (D, 8, T) €, the valuation function val; for terms is inductively
defined by:

vals g(x) = B(x) for variables x
valg g (f(t1, ... ta)) = 1(f) (vals g (t1), ..., val g(£n))

val g(t) ifs, B¢
Vals,ﬁ(l’z) ifs,ﬁpéqS
vals g({u}(t)) = valy, g(t) with s;=val, g(u)(s)

Since val; g(t) does not depend on f if ¢ is ground, we write val () in that case. <

val g (if ¢ then t, else t,)) = {

The function and predicate symbols of a signature are divided into disjoint sets of
rigid and non-rigid function and predicate symbols, respectively. By Def.[2.13] rigid
symbols have the same meaning in all states of a given Kripke structure. The following
syntactic criterion continues the notion of rigidness from function symbols to terms.

Definition 2.20. A Java CarDp DL term ¢ is rigid

o if t=x and x € VSym,

o ift=f(t,...,t,), feFSym, and the sub-terms ¢; are rigid (1<i<n),

o if t={u}(s) and s is rigid,

o if t=(if ¢ then #; else t,) and the formula ¢ is rigid (Def.[2.22) and the sub-
terms f;, t, are rigid. <

Rigid terms have the same meaning in all Java CArD DL states, whereas the mean-
ing of non-rigid terms may differ from state to state.
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2.4.4 Semantics of Java CArp DL Formulas

Definition 2.21 (Semantics of Java Carp DL formulas). Let K=(S, p) be a Kripke
structure of Java Carp DL, and let 8 be a variable assignment.

For every state s=(D, §, T) €S the validity relation = for Java Carp DL formulas
is inductively defined by:

o5, BER(ty, ..., t,) iff (val; g(t1), ..., valg(t,)) € I(R)

o s, fEEtrue

o s, Bitfalse

R

o s, BE(dAy)iffs,fe¢and s, BEy

o s, BE(dVvy)iffs, B¢ ors, B=w (or both)

o5, fE(p—y)iff s, B¢ or s, BEy (or both)

o5, BEVx.¢iff s, B2 = ¢ for every d e DA (if x: A)

o5, fEIx.¢iff s, Bl = ¢ for some d e DA (if x: A)

o s, fE{u}(¢)iff s, Bi= ¢ with s;=val; g(u)(s)

o s, B=(p)¢ iff there exists some state s’ €S such that (s,s")ep(p) and s, BE¢
o5, BE[pl¢ iff ', BE ¢ for every state s’ €S with (s,s") ep(p)

We write Sk ¢ for a closed formula ¢, since 8 is then irrelevant. <
Similar to rigidness of terms, we now define rigidness of formulas.

Definition 2.22. A Java Carp DL formula ¢ is rigid

«if ¢=p(t,...,t,), pePSym_and the terms ¢; are rigid (1<i<n),

o if p=true or ¢ =false,

o if =-y and vy is rigid,

« ¢=(y1 v ¥2), ¢=(y1 A y2), or $=(y1—>y2), and y1, y; are rigid,

o if p=Vx.y or ¢=3x.y, and v is rigid,

o ¢={u}yand vy is rigid. <

Note 2.23. A formula (p)y or [p]w is not rigid, even if y is rigid, since the truth value of
such formulas depends, e.g., on the termination behavior of the program statements p
in the modal operator. Whether a program terminates or not in general depends on
the state the program is started in. <

Rigid formulas—in contrast to non-rigid formulas—have the same meaning in all
Java CArD DL states.
Finally, we define what it means for a formula to be valid or satisfiable.

Definition 2.24 (Validity). We say that a Kripke structure K= (S, p) is a model of a
formula ¢, or that ¢ is K-valid, iff s, f= ¢ for all s€§ and all variable assignments 3
(i.e., when ¢ is true in all states).

A formula ¢ is valid if all Kripke structures are a model of ¢. <

Example 2.25. We now check the formulas from Example 2.9]for validity. We assume
that c is an integer non-rigid constant in the signature.
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E{c:=0}(c=0) since in the state in which ¢ =0 is evaluated, ¢ isindeed 0
(due to the update).
#({c:=0}c)=c since ({c:=0}c) evaluates to 0 in any state but there are

states in which ¢ (the right side) is different from 0.
E(int i=0; v=i;)v=0  since the program always terminates in state with v=0.

E[while(true){}]false  since false has to hold if the program terminates, but
the program never terminates.

Fx<y— (x++;y++;)x<y sincey may suffer integer overflow upon increment, but
not x. The fomula would have been valid assuming a
mathematical integer semantics. KeY actually offers the
possibility to work with different integer semantics.

<

2.4.5 Java Carp-reachable States

Not all states of a Java CarD DL Kripke structure can actually occur during an execu-
tion of a Java CARD program. Indeed, a state is (only) Java Carp-reachable if it satisfies
the following conditions:

1. A finite number of objects are created.”

2. Reference type attributes of created objects are either null or point to some other
created object. Similarly, all entries of created reference-type arrays are either null
or point to some created object.

3. For any array a with dynamic type 6(a)=A[], the dynamic type of the ar-
ray entries is a subtype of A (an assignment violating this condition throws an
ArrayStoreExceptionin Java).

4. Initialized classes are not erroneous and other conditions related to class initial-
ization.

5. For multi-threaded programs, program counters of threads and lock states must
be consistent with locking operations in the program.

Thus, there are formulas that are true in all Java Carbp-reachable states but that are
not valid in Java Carp DL. This problem can be overcome by adding a special predi-
cate inReachableState (formalizing the above conditions) to the invariants of the pro-
gram to be verified. Then, states that are not reachable by any Java CARD program are
excluded from consideration.

When a correctness proof is started, the KeY system automatically adds the predi-
cate inReachableState to the precondition of the specification. In the majority of cases,
proofs can be completed without considering inReachableState. There are however sit-
uations that require the use of inReachableState. To deal with such situations, the KeY
calculus provides rules that allow the user to extract parts of inReachableState that are
necessary to close the proof.

7 In Java Carp DL, objects are represented by domain elements, and the domain is defined to
be constant. Whether an object is created or not is indicated by a ghost Boolean attribute.
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2.5 The Calculus for Java Carp DL

2.5.1 Sequents, Rules, and Proofs

The KeY system’s calculus for Java CArD DL is a Gentzen-style [Gentzen,|1935] sequent
calculus. A calculus is formally a set of rules. Rules are used to derive sequents from
other sequents.

Definition 2.26 (Sequents). A sequent is of the form I'=> A, where I', A are sets of
closed Java CArD DL formulas.

The left-hand side I' is called antecedent and the right-hand side A is called succe-
dent of the sequent.

The semantics of a sequent

¢1,...,¢m:>1//1,...,1[/n

is the same as that of the formula

(DA cndm)— (yiV...Vyy) .
<

Definition 2.27 (Rule, Derivability). A rule R is a binary relation between (a) the
set of all tuples of sequents and (b) the set of all sequents.

IfR((Py,..., Pg), C) (k>0), then the conclusion C is derivable from the premisses
Py, ..., P using rule R.

The set of sequents that are derivable is the smallest set such that: If there is a rule
in the calculus that allows to derive a sequent S from premisses that are all derivable,
then S is derivable in C. <

Intuitively, a proof for a sequent S is a derivation of S written as a tree with root S,
where the sequent in each node is derivable from the sequents in its child nodes.

Definition 2.28 (Proof tree, Proof). A proof tree is a finite tree, such that:

« each node of the tree is annotated with a sequent

« each inner node of the tree is additionally annotated with one of the calculus rules
that have at least one premiss. The rule relates the node’s sequent to the sequents
of its descendants. In particular, the number of node’s descendants is the same as
the number of premisses of the rule.

« a leaf node may or may not be annotated with a rule. If it is, it is one of the rules
that have no premisses, also known as closing rules.

A proof tree for a formula ¢ is a proof tree where the root sequent is annotated
with = ¢.

A branch of a proof tree is a path from the root to one of the leaves. A branch is
closed if the leaf is annotated with one of the closing rules. A proof tree is closed if all
its branches are closed, i.e., every leaf is annotated with a closing rule.

A closed proof tree (for a formula ¢) is also called a proof (for ¢). <
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2.5.2 Soundness and Completeness of the Calculus
Soundness

The most important property of the Java Carp DL calculus is soundness, i.e., only
valid formulas are derivable.

Proposition 2.29 (Soundness). If a sequent ' => A is derivable in the Java Carp DL
calculus (Def. 2.27), then it is valid, i.e., the formula NI —\/ A is logically valid
(Def12.24). <

It is easy to show that the whole calculus is sound if and only if all its rules are sound.
That is, if the premisses of any rule application are valid sequents, then the conclusion
is valid as well. Given the soundness of the existing core rules of the Java Carp DL
calculus, the user can add new rules, whose soundness must then be proven w.r.t.
the existing rules. A bigger perspective on the issue of calculus soundness is given in
Chapter[9}

Relative Completeness

Ideally, one would like a program verification calculus to be able to prove all state-
ments about programs that are true, which means that all valid sequents should be
derivable. That, however, is impossible because Java CArD DL includes first-order
arithmetic, which is already inherently incomplete as established by Godel’s Incom-
pleteness Theorem [Goédel, 1931]. Another, equivalent, argument is that a complete
calculus for Java Carp DL would yield a decision procedure for the Halting Problem,
which is well-known to be undecidable. Thus, a logic like Java Carp DL cannot ever
have a calculus that is both sound and complete.

Still, it is possible to define a notion of relative completeness [Cook,|1978], which
intuitively states that the calculus is complete “up to” the inherent incompleteness in
its first-order part. A relatively complete calculus contains all the rules that are neces-
sary to prove valid program properties. It only may fail to prove such valid formulas
whose proof would require the derivation of a non-provable first-order property (be-
ing purely first-order, its provability would be independent of the program part of the
calculus).

Proposition 2.30 (Relative Completeness). If a sequent I'= A is valid, i.e., the for-
mula NI —V A is logically valid (Def.[2.24), then there is a finite set I'ror, of logically
valid first-order formulas such that the sequent

FFOL) I'—A
is derivable in the Java CARD DL calculus. <

The standard technique for proving that a program verification calculus is rela-
tively complete [Harel, 1979] hinges on a central lemma expressing that for all Java
Carp DL formulas there is an equivalent purely first-order formula. A completeness
proof for the object-oriented dynamic logic ODL [Beckert and Platzer, 2006b], which
captures the essence of Java CArp DL, is given by Platzer [2004a].
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2.5.3 Rule Schemata and Schema Variables

To attain a finite rule description we use rule schemata, i.e., rules containing schema
variables. Schema variables represent concrete syntactical elements (e.g., terms, for-
mulas or programs).

Definition 2.31 (Rule schema). A rule schema is of the form

p P - P

(k>0)

C
where Py, ..., Py and C are schematic sequents, i.e., sequents containing schema vari-
ables. <

A rule schema Pj---Py [ C represents a rule R if the following equivalence holds: a
sequent C* is derivable from premisses Py", ..., P iff P*---P; / C* is an instance of the
rule schema. Schema instances are constructed by instantiating the schema variables
with syntactical constructs (terms, formulas, etc.) which are compliant to the kinds
of the schema variables. One rule schema represents infinitely many rules, namely, its
instances.

There are many cases, where a basic rule schema is not sufficient for describing
a rule. Even if its general form adheres to a pattern that is describable in a schema,
there may be details in a rule that cannot be expressed schematically. For example,
in the rules for handling existential quantifiers, there is the restriction that (Skolem)
constants introduced by a rule application must not already occur in the sequent.
When a rule is described schematically, such constraints are added as a note to the
schema.

All the rules of our calculus perform one (or more) of the following actions:

o A sequent is recognised as an axiom, and the corresponding proof branch is
closed.

o A formula in a sequent is modified. A single formula (in the conclusion of the
rule) is chosen to be in focus. It can be modified or deleted from the sequent. Note
that we do not allow more than one formula to be modified by a rule application.

o Formulas are added to a sequent. The number of formulas that are added is finite
and is the same for all possible applications of the same rule schema.

o The proof branches. The number of new branches is the same for all possible ap-
plications of the same rule schema.

Moreover, whether a rule is applicable and what the result of the application is, de-
pends on the presence of certain formulas in the conclusion.

The above list of possible actions excludes, for example, rules performing changes
on all formulas in a sequent or that delete all formulas with a certain property.

Thus, all our rules preserve the “context” in a sequent, i.e., the formulas that are
not in the focus of the rule remain unchanged. Therefore, we can simplify the nota-
tion of rule schemata, and leave this context out. Similarly, an update that is common
to all premisses can be left out (this is formalized in Def.[2.32). Intuitively, if a rule
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1»

“¢=>vy/¢d'=>y"” is correct, then ¢’ =y’ can be derived from ¢ =>y in all pos-
sible contexts. In particular, the rule then is correct in a context described by I', A, U,
i.e., in all states s for which there is a state sq such that '=> A is true in sy and s is
reached from s, by executing U. Therefore, “I', U= Uy A/ U$'=Uy', A" is
a correct instance of “¢=v/¢’=y"”, and I', A, U do not have to be included in
the schema. Instead we allow them to be added during application. Note, however,
that the same I', A, U have to be added to all premisses of a rule schema.

There are also a few rules (mostly invariant rules of different flavors) where the
context cannot be omitted. Such rules are indicated with the (*) symbol.

Definition 2.32. If ) . ) X
Grees m ==V Wy

k ko ok k
¢1""’¢mk:>1lll""’wylk
¢1;~-~;¢m:>W1)-~-;1//n

is an instance of a rule schema, then

I, ’Ll(p%,...,’Ll(pim:ﬂl/ll//},...,’l/ll//}ﬁ,A

I, UK., Upk, = Uyk,..., Uyt , A
r, ﬂ¢1’~-~’ﬂ¢m:>ﬂll/l,-.-,ﬂwn,A

is an inference rule of our DL calculus, where U is an arbitrary syntactic update (in-
cluding the empty update), and I', A are finite sets of context formulas.

If, however, the symbol (*) is added to the rule schema, the context I', A, U must
be empty, i.e., only instances of the schema itself are inference rules. <

Example 2.33. Consider, for example, the rule impRight:

p=v

impRight r—

When this schema is instantiated, a context consisting of I', A and an update U can be
added, and the schema variables ¢, y can be instantiated with formulas that are not
purely first-order. For example, the following is an instance of impRight:

x=1,{x:=0}(x=y)={x:=0}(mO) ;)(y=0)
x=l={x:=0}(x=y—(m0;)(y=0))

where I'=(x=1), A is empty, and the context update U is {x:=0}. <
Schema variables and their kinds

The schema variables used in rule schemata are all assigned a kind that determines
which class of concrete syntactic elements they represent. In the following sections, we
often do not explicitly mention the kinds of schema variables but use the name of the
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variables to indicate their kind. Table 2.1 gives the correspondence between names
of schema variables that represent pieces of Java code and their kinds. In addition,
we use the schema variables ¢, y to represent formulas and I', A to represent sets of
formulas.

Table 2.1. Correspondence between names of schema variables and their kinds

b non-active prefix of Java code (Sect.[2.5.4)

w “rest” of Java code after the active statement (Sect.[2.5.4)

»q Java code (arbitrary sequence of statements)

e arbitrary Java expression

se simple expression, i.e., any expression whose evaluation, a priori, does not

have any side-effects. It is defined as one of the following:

(a) alocal variable

(b) this.a, i.e,an access to an instance attribute via the target expression
this (or, equivalently, no target expression)

(c) an access to a static attribute of the form ¢.a, where the target expres-
sion t is a type name or a simple expression

(d) aliteral

(e) acompile-time constant

(f) an instanceof expression with a simple expression as the first argu-
ment

(g) athis reference

An access to an instance attribute o.a is not considered simple because a

NullPointerException may be thrown

nse non-simple expression, i.e., any expression that is not simple (see above)

lhs simple expression that can appear on the left-hand-side of an assignment.
This amounts to the items (@)-(c) from above

v, Vo, ... local program variables (i.e., non-rigid constants)

a attribute

) label

args argument tuple, i.e., a tuple of expressions

cs sequence of catch clauses

mname  name of a method

T type expression

C name of a class or interface

If a schema variable T representing a type expression is indexed with the name of
another schema variable, say e, then it only matches with the Java type of the expres-
sion with which e is instantiated. For example, “T,, v = w” matches the Java code
“int i = j”ifand only of the type of j is int (and not, e.g., byte).

2.5.4 The Active Statement in a Modality

The rules of our calculus operate on the first active statement p in a modality (zpw) or
[mpw]. The non-active prefix 7 consists of an arbitrary sequence of opening braces “{”,
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labels, beginnings “try{” of try-catch-finally blocks, and beginnings “method-
frame(...){” of method invocation blocks. The prefix is needed to keep track of the
blocks that the (first) active command is part of, such that the abruptly terminating
statements throw, return, break, and continue can be handled appropriately.

The postfix w denotes the “rest” of the program, i.e., everything except the non-
active prefix and the part of the program the rule operates on (in particular, w contains
closing braces corresponding to the opening braces in 7). For example, if a rule is
applied to the following Java block operating on its first active command “i=0;”, then
the non-active prefix 7 and the “rest” w are the indicated parts of the block:

l:{try{ i=0; j=0; } finally{ k=0; 1}}
—_—
7T w

In versions of dynamic logic for simple programming languages, where no prefixes
are needed, any formula of the form (pg) ¢ can be replaced by (p){g)¢. In our calculus,
decomposing of (npqw) ¢ into (7p){qw)¢ is not possible (unless the prefix 7 is empty)
because 7p is not a valid program; and the formula (npw){nqw)¢ cannot be used
either because its semantics is in general different from that of (mpqw)¢.

2.5.5 The Essence of Symbolic Execution

Our calculus works by reducing the question of a formula’s validity to the question of
the validity of several simpler formulas. Since Java CArD DL formulas contain pro-
grams, the Java Carp DL calculus has rules that reduce the meaning of programs to
the meaning of simpler programs. For this reduction we employ the technique of sym-
bolic execution [King, 1976]. Symbolic execution in Java Carp DL resembles playing
an accordion: you make the program longer (though simpler) before you can make it
shorter.
For example, to find out whether the sequent

= (o.next.prev=o0;)o.next.prev=o

is valid, we symbolically execute the Java code in the diamond modality. At first, the
calculus rules transform it into an equivalent but longer (albeit in a sense simpler)
sequence of statements:

=—>(ListEl v; v=o.next; v.prev=o;)o.next.prev=o .

This way, we have reduced reasoning about the complex expression o.next.prev=o
to reasoning about several simpler expressions. We call this process unfolding, and it
works by introducing fresh local variables to store intermediate computation results.

Now, when analyzing the first of the simpler assignments (after removing the vari-
able declaration), one has to consider the possibility that evaluating the expression
o.next may produce a side effect if o is null (in that case an exception is thrown).
However, it is not possible to unfold o.next any further. Something else has to be
done, namely a case distinction. This results in the following two new goals:
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o#null = {v:=o.next}(v.prev=o;)o.next.prev=o

o=null = (throw new NullPointerException();)o.next.prev=o

Thus, we can state the essence of symbolic execution: the Java code in the formulas
is step-wise unfolded and replaced by case distinctions and syntactic updates.

Of course, it is not a coincidence that these two ingredients (case distinctions and
updates) correspond to two of the three basic programming constructs. The third ba-
sic construct are loops. These cannot in general be treated by symbolic execution,
since using symbolic values (as opposed to concrete values) the number of loop it-
erations is unbounded. Symbolically executing a loop, which is called “unwinding,
is useful and even necessary, but unwinding cannot eliminate a loop in the general
case. To treat arbitrary loops, one needs to use induction (= Sect.[2.6.4) or loop in-
variants (= Sect.[2.8). Also, certain kinds of loops can be translated into quantified
updates [Gedell and Héhnle, 2006].

Method invocations can be symbolically executed, replacing a method call by the
method’s implementation. However, it is often useful to instead use a method’s con-
tract so that it is only symbolically executed once—during the proof that the method
satisfies its contract—instead of executing it for each invocation.

2.5.6 Components of the Calculus

Our Java CarD DL calculus has five major components, which are described in detail
in the following sections. Since the calculus consists of hundreds of rules, however,
we cannot list them all in this book. Instead, we give typical examples for the different
rule types and classes (a complete list can be found on the KeY project website).

In particular, we usually only give the rule versions for the diamond modality (-).
The rules for box modality [-] are mostly the same—notable exceptions are the rules
for handling loops (Sect.[2.8) and some of the rules for handling abrupt termination

(Sect.[2.7.6).

The five components of the Java Carp DL calculus are:

1. Non-program rules, i.e., rules that are not related to particular program con-
structs. This includes first-order rules, rules for data types (in particular the in-
tegers), rules for modalities (e.g., rules for empty modalities), and the induction
rule.

2. Rules that work towards reducing/simplifying the program and replacing it by a
combination of case distinction (proof branches) and sequences of updates. These
always (and only) apply to the first active statement. A “simpler” program may be
syntactically longer; it is simpler in the sense that expressions are not as deeply
nested or have less side-effects.

3. Aninvariant rule that handles loops for which no fixed upper bound on the num-
ber of iterations exists. (Another technique for doing this is induction, which is
part of Component1})

4. Rules that replace a method invocation by the method’s contract.

5. Update simplification.
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Component 2 is the core for handling Java CARD programs occurring in formulas.
These rules can be applied automatically, and they can do everything needed for han-
dling programs except evaluating loops and using method specifications.

The overall strategy is to use the rules in Component 2, interspersed with applica-
tions of rules in Component[3/and Component[4 for handling loops resp. methods, to
step-wise eliminate the program and replace it by updates and case distinctions. After
each step, Component/5 is used to simplify/eliminate updates. The final result of this
process are sequents containing pure first-order formulas. These are then handled by
Component/l]

The symbolic execution process is for the most part done automatically by the
KeY system. Of course, this presupposes that loop invariants are given. In addition,
the user can give the prover modularization hints such as method contracts, lemmas,
etc. User interaction may also be necessary when solving the first-order problem that
is left at the end of symbolic execution (e.g., quantifier instantiation). At this stage, the
KeY system can request assistance from external decision procedures for first-order
logic and basic data type theories.

2.6 Calculus Component 1: Non-program Rules

2.6.1 First-order Rules

This component includes:

o Standard first-order rules (= Fig.[2.2)
o Almost standard equality rules (which we do not show). As we deal with a modal
logic, an equality t, =, may only be used for rewriting if
- both t; and ¢, are rigid terms (Def.[2.20), or
— the equality #; =1, and the occurrence of t; that is being replaced are (a) not
in the scope of two different program modalities and (b-1) not in the scope
of two different updates or (b-2) in the scope of two updates with the same
effect.
Equality handling is further complicated by subtyping
o Rules for reasoning about type casts and type predicates (which we do not show)
« Standard arithmetical rules.

2.6.2 The Cut Rule and Lemma Introduction

The cut rule

allows to introduce a lemma ¢, which is an arbitrary Java Carp DL formula. The
lemma occurs in the succedent of the left premiss (where, intuitively speaking, the
lemma has to be proved) and in the antecedent of the right premiss (where, intuitively
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andLeft Mi andRight M
pry= =¢ry

orRight — 2% oreft = V=
=¢Vvy oVy=—

=¢—y

¢—>V/:

notLeft —¢ notRight
= = -¢
allRight —L/1(®) allLefe 01X/ 1) =
= Vx.¢ Vx.¢ =

with c: — A a new constant, if x:A

[x/c](¢) =

Ix.¢ =

exLeft

with teTrm/ rigid ground, A’ A, if x:A

= 3x.¢, [x/t](¢)

exRight
= 3Ix.¢

with c: — A a new constant, if x:A with #e Trm - rigid ground, A'c A ifx:A

close

closeFalse —— closeTrue ——
false — = true

Figure 2.2. Classical first-order rules

speaking, the lemma can be used). One can also view the cut rule as a case distinction
on whether ¢ is true or not as the right premiss is equivalent to = -¢.

Using the cut rule in the right way can greatly reduce the length of proofs.
However, since the cut formula ¢ is arbitrary, the cut rule is not analytic and non-
deterministic. That is the reason why it is not included in the calculus for first-order
logic (it is not needed for completeness). In the KeY system it is only applied interac-
tively when the user can choose a useful cut formula based on their knowledge and
intuition.

The cut rule introduces alemma ¢ that is proved in the particular context in which
it is introduced. Thus, it can only be used in that context. It can, for example, not be
used in the context of an update U since ¢ does not imply { U} ¢. Another way to
introduce a lemma is to define a new calculus rule and prove its soundness. That way,
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alemma ¢ can be introduced that can be used in any context (provided that ¢ is shown
to be logically valid).

2.6.3 Non-program Rules for Modalities

The Java Carp DL calculus contains some rules that apply to modal operators and are,
thus, not first-order rules but that are neither related to a particular Java construct.
The most important representatives of this rule class are the following two rules for
handling empty modalities:

—n ¢) f——
emptyDiamond ———— emptyBox ————
—=[1¢

=()¢
The rule

diamondToBox

relates the diamond modality to the box modality. It allows to split a total correctness
proof into a partial correctness proof and a separate proof for termination. Note that
this rule is only sound for deterministic programming languages.

2.6.4 Induction

This following simple Peano induction rule is used both to conclude that a formula
holds for all (natural) numbers, and to use that conclusion as an assumption for other
proof obligations:

=1(0)

=Vn.(I(n)—I(n+1))
Vn.I(n)=

natinduction
s

where I is a formula with at most one free variable n:N.

It has three premisses: (1) the base case, (2) the step case, and (3) the use case. The
formula I is the induction hypothesis and n is the induction variable. Dynamic Logic
makes it possible to use this rule to prove a wide range of program properties, since
the induction hypothesis can contain programs.

2.7 Calculus Component 2: Reducing Java Programs

2.7.1 The Basic Assignment Rule

In Java—Ilike in other object-oriented programming languages—different reference
variables can refer to the same object. This phenomenon, called aliasing, causes diffi-
culties for handling assignments in a calculus (a similar problem occurs with syntac-
tically different array indices that may refer to the same array element).
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For example, whether or not the formula o1.a=1 still holds after the execution
of the assignment “02.a = 2;” depends on whether or not o1 and o2 refer to the
same object. Therefore, Java assignments cannot be symbolically executed by syn-
tactic substitution, as done, for instance, in classic Hoare Logic. Solving this problem
naively—by doing a case split—is inefficient and leads to heavy branching of the proof
tree.

In the Java CarDp DL calculus we use a different solution. It is based on the notion
of updates, which can be seen as “semantic substitutions”. Evaluating {loc:=val}¢ in
a state is equivalent to evaluating ¢ in a modified state where loc evaluates to val, i.e.,
has been “semantically substituted” with val.

The KeY system uses special simplification rules to compute the result of apply-
ing an update to terms and formulas that do not contain programs (= Sect.[2.10).
Computing the effect of an update to a formula (p)¢ is delayed until p has been sym-
bolically executed using other rules of the calculus. Thus, case distinctions are not
only delayed but can often be avoided altogether, since (a) updates can be simplified
before their effect has to be computed, and (b) their effect is computed when a max-
imal amount of information is available (namely affer the symbolic execution of the
whole program).

The basic assignment rule thus takes the following simple form:

= {loc:=val}(n w)¢

assignment = (rr loc = val; w)¢

That is, it just turns the assignment into an update. Of course, this does not solve the
problem of computing the effect of the assignment. This problem is postponed and
solved later by the rules for simplifying updates.

Furthermore—and this is important—this “trivial” assignment rule is correct only
if the expressions loc and val satisfy certain restrictions. The rule is only applicable
if neither the evaluation of loc nor that of val can cause any side effects. Otherwise,
other rules have to be applied first to analyze loc and val, check for possible excep-
tions, etc. For example, these other rules would replace the formula (x = ++i;)¢
with (i = i+1; x = 1i;)¢, before the assignment rule can be applied to derive first
{i:=i+1}(x = i;)¢andthen {i:=i+1}{x:=1i}()¢. These rulesare presented in the
KeY book and we do not show them here.

2.7.2 Rules for Conditionals

Most if-else statements have a non-simple expression (i.e., one with potential side-
effects) as their condition. In this case, we unfold it in the usual manner first. This is
achieved by the rule

ifElseUnfold
= (7 boolean v = nse; if (v) p else q w)¢

= (n if (nse) p else q w)¢

where v is a fresh boolean variable.
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After dealing with the non-simple condition, we will eventually get back to the
if-else statement, this time with the condition being a variable and, thus, a simple
expression. Now it is time to take on the case distinction inherent in the statement.
That can be done using the following rule:

se=TRUE=> (7 p w)¢
se=FALSE=>(7 q w)¢

ifElseSplit
= (m if (se) p else q w)¢

While perfectly functional, this rule has several drawbacks. First, it unconditionally
splits the proof, even in the presence of additional information. However, the program
or the sequent may contain the explicit knowledge that the condition is true (or false).
In that case, we want to avoid the proof split altogether. Second, after the split, the
condition se appears on both branches, and we then have to reason about the same
formula twice.

A better solution is the following rule that translates a program with an if-else
statement into a conditional formula:

= if(se=TRUE) then (7 p w)¢ else (7 q w)¢

ifElse
= (n if (se) p else q w)¢

Note that the if-then-else in the premiss of the rule is a logical and not a program
language construct (= Def.[2.8).

The ifElse rule solves the problems of the ifElseSplit rule described above. The
condition se only has to be considered once. And if additional information about its
truth value is available, splitting the proof can be avoided. If no such information is
available, however, it is still possible to replace the propositional if-then-else operator
with its definition, resulting in

(se=TRUE)— (7 p w)¢p A (se#TRUE)— (7 q w)¢

and carry out a case distinction in the usual manner.

A problem that the above rule does not eliminate is the duplication of the code
part w. Its double appearance in the premiss means that we may have to reason about
the same piece of code twice. Leino [2005] proposes a solution for this problem within
a verification condition generator system. However, to preserve the advantages of a
symbolic execution, the KeY system here sacrifices some efficiency for the sake of
usability. Fortunately, this issue is hardly ever limiting in practice.

The rule for the switch statement, which also is conditional and leads to case
distinctions in proofs, is not shown here. It transforms a switch statement into a
sequence of if statements.

2.7.3 Unwinding Loops

The following rule “unwinds” while loops. Its application is the prerequisite for sym-
bolically executing the loop body. Unfortunately, just unwinding a loop repeatedly is
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only sufficient for its verification if the number of loop iterations has a known upper
bound.

If the number of loop iterations is not bounded, the loop has to be verified using
either induction (= Sect.[2.6.4) or an invariant rule (= Sect.[2.8). If induction is used,
the unwind rule is also needed as the loop has to be unwound once in the step case of
the induction.

In case the loop body does not contain break or continue statements (which is
the common case), the following simple version of the unwind rule can be applied:

= (n if (&) { p while (e) p } w)¢
= (7 while (e) p w)¢

loopUnwind

2.7.4 Replacing Method Calls by their Implementation

Symbolic execution deals with method invocations by syntactically replacing the call
by the called implementation (verification via contracts is described in Sect.[2.9). To
obtain an efficient calculus we have conservatively extended the programming lan-
guage with two additional constructs: a method body statement, which allows us to
precisely identify an implementation, and a method-frame block, which records the
receiver of the invocation result and marks the boundaries of the inlined implemen-
tation.

2.7.5 Instance Creation and Initialization

Java Carp DL, like many modal logics, operates under the technically useful constant
domain semantics (all program states have the same universe). This means, however,
that all instances that are ever created in a program have to exist a priori. To resolve
this seeming paradox, we use ghost fields that allow to change and query the program-
visible instance state (created, initialized, etc.).

To handle instance initialization, we use an approach that is based on program
transformation. The transformation reduces a Java program p to a program p’ such
that the behavior of p (with initialization) is the same as that of p’ when initializa-
tion is disregarded. This is done by inserting code into p that explicitly executes the
initialization.

2.7.6 Handling Abrupt Termination

In Java, the execution of a statement can terminate abruptly (besides terminating
normally and not terminating at all). Possible reasons for an abrupt termination are
(a) that an exception has been thrown, (b) that a loop or a switch statement is ter-
minated with break, (c) that a single loop iteration is terminated with the continue
statement, and (d) that the execution of a method is terminated with a return state-
ment. Abrupt termination of a statement either leads to a redirection of the con-
trol flow after which the program execution resumes (for example if the exception
is caught), or the whole program terminates abruptly (if the exception is not caught).



36 2 What You Need to Know about KeY
If the Whole Program Terminates Abruptly

In Java Carp DL, an abruptly terminating statement—where the abrupt termination
does not just change the control flow but actually terminates the whole program p in
a modal operator (p) or [p]—has the same semantics as a non-terminating statement
(Def.[2.13). For that case rules such as the following are provided in the Java Carp DL
calculus for all abruptly terminating statements:

throwDiamond throwBox
= false = true
= (throw se; w)¢ = [throw se; w]¢

Note that in these rules, there is no inactive prefix 7 in front of the throw statement.
Such a 7 could contain a try with accompanying catch clause that would catch the
thrown exception. However, the rules throwDiamond, throwBox etc. must only be
applied to uncaught exceptions. If there is a prefix 7, other rules described below must
be applied first.

If the Control Flow is Redirected

The case where an abruptly terminating statement does not terminate the whole pro-
gram in the modal operator but only changes the control flow is more difficult to han-
dle. The basic idea for handling this case in the calculus is to execute the change in
control flow symbolically by syntactically rearranging the affected program parts. The
calculus rules have to consider the different combinations of prefix-context (begin-
ning of a block, method-frame, or try) and abruptly terminating statement (break,
continue, return, or throw). We omit these rules here.

2.8 Calculus Component|3; Invariant Rule for Loops

There are two techniques for handling loops in KeY: induction and using an invariant
rule. For the sake of clarity, we show here a “classical” invariant rule. In particular,
we assume that there is no abrupt termination and that loop guard expressions do
not have side-effects. In reality, the KeY calculus implements a much more involved
version of the rule.

I'= Ulnv, A
Inv, se=[p]lnv

Inv, —~se=¢
invRuleClassical - (%)
I'=U[while (se) { p }]¢, A

This rule states that, if one can find a formula Inv such that the three premisses hold
requiring that

(a) Inv holds in the beginning,
(b) Invisindeed an invariant, and
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(c) the conclusion ¢ follows from Inv and the negated loop condition —se,

then ¢ holds after executing the loop (provided it terminates).

Remember that the symbol () in the rule schema means, that the context I', A, U
must be empty unless its presence is stated explicitly (as in the first premiss), i.e., only
instances of the schema itself are inference rules.

2.9 Calculus Component 4: Using Method Contracts

There are basically two possibilities to deal with method calls in program verification:
inlining the body of the invoked method (= Sect.2.74) or using the specification
(which then, of course, has to be verified). The specification of a method is called
method contract and is defined as follows.

Definition 2.34 (Method contract). A method contract for a method or construc-
tor op declared in a class or interface Ce P is a quadruple

(Pre, Post, Mod, term)

where:

o Pree Formulas is the precondition that may contain the following program vari-
ables:

— self for the receiver object (the object which a caller invokes the method on);
if op refers to a static method or a constructor the receiver object variable is
not allowed;

- py-..,p, for the parameters.

o Post e Formulas is the postcondition of the form

(exc=null— ¢) A (exc-=null —y)

where ¢ is the postcondition for the case that the method terminates normally
and y specifies the case where the method terminates abruptly with an exception.
The formulas ¢ and y may contain the following program variables:
- self for the receiver object; again the receiver object variable is not allowed
for static methods;
- P>+ -»p, for the parameters;
— result for the returned value;
o Mod is a modifier set for the method, i.e., an upper bound on state changed by op.
« The termination marker ferm is an element from the set {partial, total}; the
marker is set to total if and only if the method contract requires the method or
constructor to terminate, otherwise term is set to partial. <

The formulas Pre and Post are Java Carp DL formulas. However, in most cases they
do not contain modal operators. This is in particular true if they are automatically
generated translations of JML or OCL specifications.

The KeY calculus contains rules both for replacing method invocations with con-
tracts and establishing their correctness.
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2.10 Calculus Component|5: Update Simplification

The process of update simplification comprises (a) update normalisation and (b) up-
date application. Update normalisation transforms single updates into a certain nor-
mal form, while update application computes the effect of applying an update to a
term, a formula, or another update. Note that both normalisation and application of
updates is done automatically; there are no interactive rules for that purpose.

We do not give the rules for updates here. We just note that updates can be dis-
tributed over logical operators (except modal operators) as (a) the semantics of logical
operators is not affected by a state change (b) the state change affected by an update
is deterministic. The application of an update u to a formula with a modal operator,
such as {u} (p)¢ and {u} [p]®, cannot be simplified any further. In such a situation,
instead of using update simplification, the program p must be handled first by sym-
bolic execution. Only when the whole program has disappeared, the resulting updates
can be applied to the formula ¢.

Example 2.35 (Update application). As an example, consider the term

{a(o):=t}a(p) -

The update a(o):=t affects the term a(p) iff o and p evaluate to the same domain
element. In this case, the result is t, otherwise the update is simply propagated giving
a({a(o):=t}p). The latter simplifies to p, since it can be excluded syntactically that
an update to a unary function a can affect the non-rigid nullary function p.

Thus, the result of applying the update in the original term is the conditional term

if p=o then t else a(p) ,

which coincides with our intuition. <



Part 11
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Typographic Conventions

To keep the introductory material compatible with [Beckert et al., 2007] on one hand,
but to use “natural” notation in the Part dedicated to multi-threading on the other
hand, we in the following overload certain symbols. From now on:

o denotes in MODL a part of the program before the emphasized position. Was:
typing function (= Def.2.3).

n;  denotes in MODL the thread choice function (“permutation”) at position i.
Was: the non-active prefix of a statement sequence (= Sect.[2.5.4). MODL gen-
eralizes the non-active prefix to the irrelevant program part « (above).

T  denotes in MODL the carrier set of thread ids. Was: the set of types in a type
hierarchy (= Def.[2.1).

(-} denotes in MODL the concurrent diamond modality. Was: the sequential Java
Carp modality (= Def.[2.8). Sequential diamond modality in MODL is de-
noted by (:). The same applies for the box modality [-].
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Introducing MODL—A Multi-threaded Object-oriented
Dynamic Logic

Multithreading is just one damn thing after,
before, or simultaneous with another.

Andrei Alexandrescu

3.1 Main Idea of the Proposed Logic and Proof System

Our aim has been to design a program logic that

o reflects the properties of Java concurrency in an intuitive manner

o has a sound and (relatively) complete calculus

« employs only sound and transparent abstractions

« poses no bounds on the state space or thread number

« allows reasoning about properties of the scheduler, but does not require such rea-
soning for program verification.

In parallel to Object-oriented Dynamic Logic (ODL) [Beckert and Platzer, 2006b],
which captures the essence of object-orientation in a small language, we have called
our logic MODL—Multi-threaded Object-oriented Dynamic Logic.

The logic MODL

Unsurprisingly, MODL is a close relative of Java Carp DL, the sequential KeY logic.
It has the familiar modal operators (p)¢ and [p]¢ referring, this time, to the total and
partial correctness of a multi-threaded program p. The biggest difference lies in the
programs: multi-threaded programs require a different representation than sequential
ones. Conceptually, we follow the CFG-style program model of Keller [1976], who has
defined “parallel programs” as

a bipartite directed graph, the nodes of which are divided into
o place nodes: representing points at which an instruction pointer of a pro-
cessor may dwell,
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« transitions nodes: representing a class of transitions, each denoting an
event which corresponds to the execution of a particular instruction.

In our case, the role of place nodes is played by set-valued control variables, which
are part of the state and contain thread ids (collectively we also call them a thread
configuration). The transition nodes are given by Java-like statements, which appear
as “program text” inside the modal operator (= Fig.[3.1).

o D}a=x; if (a>0) {{D D}x=a—1; ...}
[ —
thread ids
if (true) if (a>0)
—_— — —
a=x; x=a-1;

Figure 3.1. A textual and a graph representation of a multi-threaded program (together with
thread configuration). The exact definitions are given in Section[4.1]

Execution of a program corresponds to the movement of thread id “tokens”, while
the program text remains unaltered. The movement is accompanied by a correspond-
ing change in data state. It is clear that programs can behave differently depending on
the thread scheduling. The natural question is how to model the scheduler?

With a purely indeterministic scheduling, we have no choice but to perform (a
prohibitively large number of) case distinctions in the calculus. Unsightly meta-level
efforts would then be necessary to prune the proof search space and get a grip on the
complexity. Instead, we opt for an underspecified deterministic scheduler, and express
its decisions explicitly on the object level by means of a partially specified scheduling
function.

Such a design gives our concurrent programs (surprisingly maybe) a deterministic
semantics, just as is the case with sequential Java programs (= Sect.[2.2). The main
advantage is the much stronger control over granularity of reasoning. We can tackle
simple problems with relatively little effort, but still have the power to get into the “gory
details” for demanding cases. Furthermore, we retain beneficial logical properties, like

(p)p—[pl¢-

A calculus for MODL

To prove theorems of MODL, we have developed a sequent-style calculus. The calcu-
lus performs symbolic execution of programs—a method, which goes back to [King,
1976] and ensures good understandability of the process for the user. As far as we
know, this work is the first application of symbolic execution to full functional verifi-
cation of multi-threaded programs.
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In principle, the calculus explores the behavior of a concurrent program by build-
ing all possible thread interleavings. Done naively, such an approach is doomed to
failure due to state explosion; it is also inapplicable to systems with an unbounded
number of threads. Our calculus can effectively perform such exploration by employ-
ing symmetry reductions that merge many interleavings that are not significantly dif-
ferent. This is efficiently possible for the considered language fragment and produces
a feasible number of cases (even in presence of unbounded concurrency). Further
efficiency gains are possible from appropriate program and proof modularization.

By means of symbolic execution, the calculus reduces assertions about programs
to assertions about data types and permutations, which encapsulate the scheduler
decisions and hide symmetric schedulings. In the desirable case that the program
is scheduling-independent' the permutations can be removed from the correctness
assertions by application of standard algebraic lemmas. When also the remaining as-
sertions (now without permutations) can be discharged, then the program is fully
correct w.r.t. its functional specification.

Plan of attack

Chapter Content

this chapter continues with a discussion of which features of Java concurrency
are supported and surveys related work.

Chapter[4] defines the basic version of MODL, introducing the concepts of
threads, deterministic scheduling and thread-local data.

Chapter5  refines the basic version of the logic with a more verification-friendly
scheduler formulation. The refined scheduler model avoids explicit
thread enumeration, allows unbounded thread configurations and
symmetry reduction.

Chapter[6]  presents the symbolic execution calculus used for verification, de-
scribes how Java programs are normalized (“unfolded”) before veri-
tying.

Chapter[7]  shows further extensions and refinements: how to prove atomicity
with invariants, verify condition variables, establishing program cor-
rectness w.r.t. the Java Memory Model; discusses future work.

Chapter(8]  describes the implementation of the calculus in the KeY system and
presents case studies.

! Scheduling independence means here that the program’ final state always satisfies the spec-
ification, in spite of possibly different intermediate states taken in different runs.
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3.2 Modeling Java Concurrency

Threads and Shared Memory

Concurrent programming in Java is based on shared-memory multi-threading. A
thread is a single flow of control that can execute program instructions independently
of other threads. A thread, in essence, consists of a program counter and a call stack.
Threads can exchange data via references to the same objects on the shared heap.

In Java, threads are created and (to some extent) controlled via instances of the
java.lang.Threadclass. Such instances can be obtained in two ways: (1) by declar-
ing and instantiating a class that extends Thread or (2) by passing a Runnable in-
stance to the standard constructor of the Thread class. Typical code for creating and
starting a thread looks like this:

Thread t = new MyThread();
t.start();
// run() method of MyThread executes asynchronously now

Java —

The use of objects to create and control threads sometimes obnubilates the fact
that threads and objects are, actually, two orthogonal concepts. Java objects are mostly
passive data entities coming to life when threads execute their methods. On the other
hand, objects have only limited means to prevent undesired access.

No thread identities in programs

In MODL threads are currently identified not with java.lang.Thread instances,
but with elements (thread ids or tids) of a not further structured type Thread. Cur-
rently, we do not support thread identities in programs. This means that the program-
mer may not make use of the reference t shown in the listing above.

It is, thus, not allowed to invoke thread-controlling methods of the Thread in-
stance, the most important being t.interrupt () and t.join(). We believe that
this limitation prevents us from verifying only a small fraction of interesting code.
In particular, it does not forbid the use of synchronized blocks or condition variables
with wait ()/notify().

Furthermore, we conjecture that it is possible to extend our logic and calculus with
thread identities in programs, since thread identities are completely exposed through
the scheduler function. In this case we would indeed identify the type Thread with
java.lang.Thread. In general, using thread identities in programs breaks thread
symmetry and would degrade the performance of the proof system. This approach
may still be useful in certain cases though.

No dynamic thread creation (but unbounded multi-threading)

The only thread creation mechanism we currently provide is a possibility to specify
the initial thread configuration of a program (together with the initial local variable
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assignment). Note that the configuration values can be symbolic (“k threads”). While
this limitation is indeed unfortunate, it does not impair the usefulness of the calculus
much. It is in the nature of concurrent Java applications that most objects are passive
entities. They are unaware of thread creation and can (and indeed have to) be verified
for an arbitrary number of threads accessing them. The most prominent expression of
this fact is library code, which has to be thread-safe for any number of client threads.

Sequential Coverage

On the sequential side, we benefit from the 100% Java Carp coverage of the KeY calcu-
lus. This includes full support for dynamic object creation (with static initialization),
efficient aliasing treatment, Java-faithful arithmetics, etc. All of these features can be
used in verification of concurrent programs.

Exceptions cannot be caught

One area where there is currently a gap between the concurrent and the sequential
calculus is exception handling. The concurrent proof system is sound but incom-
plete in this regard. Exceptions are always detected, but once thrown they cannot
be caught. The calculus treats the whole program as non-terminating in this case. A
possible approach to overcoming this limitation is sketched in the section on future
work (= Sect.[7.4).

No non-atomic loops

Finally, we require all loops to be atomic. The programmer has to ensure that no (sig-
nificant) interleavings occur while the loop runs. This property can be checked by
our method as described later on (= Sect.[Z1). An approach for working around
this limitation as well as some remarks about developing a more elaborated model
of the scheduler that does not have this restriction are given in the section on future
work (= Sect.[7.4).

Mutual Exclusion

Mutual exclusion of threads in critical regions is achieved by means of synchronized
methods and blocks. Every such block includes a reference to a locked object (for syn-
chronized instance methods it is the object referenced by this, for static methods—
the class object). Locks are binary semaphores, which can be acquired or released by
a thread. Every object has one such lock. At most one thread can possess any given
lock at the same time. Threads trying to enter a synchronized block where the lock is
held by another thread are blocked until the lock becomes available.

Locks can only be acquired and released in block-structured manner, mean-
ing that when the control flow leaves a synchronized block—whether normally or
abruptly—the involved lock is automatically released. Locks are also reentrant: if a
thread already possesses a certain lock, a repeated acquisition of the same lock suc-
ceeds immediately. In this case we say that the lock depth has increased.
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Declaring a method synchronized does not mean that it becomes atomic, i.e., free
from harmful interference. Atomicity is only guaranteed if all threads in the system
potentially accessing the same data acquire the same lock(s). Threads not adhering
to an appropriate locking protocol can observe inconsistent state or perform harmful
updates, destroying the assumptions of other threads.

A particular problem with synchronized blocks is that the value of the lock ex-
pression, which may be as simple as a field

synchronized(lock) {...}
or as complex as a method
synchronized(lock()) {...}

can change over time. Threads seeing different values of the lock expression in this
case are no longer guaranteed mutual exclusion. This subtle issue is a source of hard-
to-find errors.

The main problem with locking—or, more general, with Java concurrency—is that
it is a major source of non-compositionality. There is no single point where a correct
policy for accessing a shared resource is fixed in Java. Each thread must voluntarily
adhere to the programmer-designed locking protocol in order for the whole applica-
tion to be correct.

Modeling locking in our programming language

To make lock acquisition and release explicit, we extend the Object class with two
“ghost” methods:

1. public void <lock>()
2. public void <unlock>() .

Code marked as synchronized is automatically surrounded by invocations of these
methods during the unfolding stage (= Sect.[6.2). To keep track of locking state we
also declare two ghost fields per object:

1. <lockedby> of type tid (identity of the thread holding the object’s lock)
2. int <lockcount> (locking depth).

Condition Variables

An important feature of Java’s concurrency mechanism is condition variables. It al-
lows threads to suspend execution until an external signal is received. The signaling
does not involve thread identities, but works via a shared reference to an arbitrary
object.

The waiting thread must acquire the object’s lock first. Calling wait () on the ob-
ject releases the lock and suspends thread execution. When a wake-up signal is re-
ceived, the thread leaves the suspended state but does not yet continue execution. It
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must now compete for the acquisition of the lock with other threads. When it suc-
ceeds, the depth of the lock is restored to the state before the wait.

The notifying thread must possess the object lock as well. Sending a wake-up sig-
nal to one (randomly chosen) suspended thread requires callingnotify () onthe cor-
responding object. Waking up all threads waiting is possible by calling notifyAll ().
Again, the waiting threads will be able to proceed in the earliest when the notifying
thread has released the lock.

Since other threads can intervene and destroy the condition between the wake-
up signal and lock re-acquisition (a phenomenon known as “barging”), it is in most
cases compulsory to re-test the condition upon wake up and return to the suspended
state if it is not satisfied. This practice is advocated by all programming guidelines and
followed by most of the programs.

The Java Memory Model

The Java Memory Model (JMM) is a part of the Java Language Specification, which de-
scribes how threads interact via shared memory. Many programmers assume that Java
multi-threading operates under an intuitive, sequentially consistent memory model.
Sequential consistency [Lamport,1979] means that updates to shared state are imme-
diately visible to all threads, and concurrent program behavior can be described by
thread interleavings. In reality, the Java Memory Model provides much weaker guar-
antees: updates to shared state performed by one thread need not become immediately
visible to other threads. Even worse, updates may become visible to other threads in
an order different from the one in which they have been carried out.

The JMM has undergone greater revisions within [JSR-133]. The latest, most com-
prehensive accounts from the responsible authors are [Manson, 2004; Manson et al.,
2005a]. In them the JMM designers make three promises to the users:

1. A promise for programmers. Programs without data races (also known as prop-
erly or fully synchronized programs) shall have sequentially consistent semantics.
This is also known as the DRF guarantee.

2. A promise of security. Programs with data races shall still enjoy certain minimal
security guarantees. The JMM promises that a program with a data race will never
divulge—due to the race alone—potentially sensitive information contained in
program parts unrelated to the race.

In other words, the JMM promises that variables can only assume values that are
in some sense “justifiable” by the program at hand. Unjustifiable out-of-thin-air
values (OoTA), which could breach security, should be prevented. What consti-
tutes an OoTA value is a controversial issue and is currently specified by means
of an example catalog.

To keep this promise the JMM defines a (complicated) policy as to what consti-
tutes an allowed behavior in presence of a data race.

3. A promise for compilers. Common compiler and VM optimizations shall be al-
lowed.
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Current research [Aspinall and Sev¢ik, 2007; Huisman and Petri, 2007] shows that the
latest JMM formulation still suffers from quite severe deficiencies. In particular, the
promises 2 and 3 are not fulfilled. The promise 1, in contrast, is fulfilled and it is con-
sensus in the field that the only way programmers can achieve well-defined program
behavior is by staying within the fully-synchronized fragment of Java. Calculus rules
for checking this in our proof system are presented in Section[7.3.

Finalization and Other Concurrency Primitives

Among the things that we do not consider is finalization, even though finalizers intro-
duce concurrency into an application. The use of finalizers is further complicated by
intricate interactions with the Java Memory Model. Experts estimate that most uses
of finalizers in practice are subtly incorrect [Boehm, 2005]. Still, in our logic, we have
to disregard finalization as we do not model garbage collection.

Furthermore, since our logic lacks any notion of time, we do not treat primitives
that involve timing, such as wait (long millisecs).

The atomicity of assignments to non-volatile long or double variables is imple-
mentation-specific according to the JLS. A JVM is allowed to implement a single write
to such a variable as two separate writes: one to each 32-bit half. For this reason, we
currently demand that all long or double variables are declared volatile.

3.3 Related Work

Westheimer’s Discovery: A couple of months
in the laboratory can frequently save a couple
of hours in the library.

Classical approaches to deductive verification of concurrent programs

One of the first deductive verification methods was the partial correctness proof
method of Ashcroft [1975] and Keller [1976], incorporating a CFG-like program for-
malism and an induction principle. The principle is to show that every atomic state-
ment preserves a global invariant. Of course, such global invariants can quickly be-
come unwieldy without modularization. Nonetheless, these early works contain many
seminal insights into the inner working of concurrent programs

Another classical method is due to Owicki and Gries [1976b] and builds on Hoare
Logic for sequential programs. The method combines a proof of local (i.e., sequen-
tial) correctness with a non-interference check. The latter establishes that assump-
tions used throughout the proof of local correctness are not destroyed if the sched-
uler chooses to interleave execution with other threads. This leads to proof size that
is quadratic in the number of statements. The method is not compositional. We have
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implemented an Owicki-Gries-style proof system for a fragment of Java in KeY [Kle-
banov, 2004]. Further modern adaptations of the method are described in the next
section.

A revolutionary step towards compositional verification of concurrent programs
was the rely-guarantee method of Jones [1981]. The method introduces for each thread
two predicates: rely and guarantee. In contrast to assertions or postconditions these
predicates range not over states but over pairs of consecutive states. The proof method
consists in showing that every step of a thread satisfies its guarantee obligation as-
suming that every step of the environment satisfies the rely assumption. The rely as-
sumption in its turn is composed from the guarantee obligations of other threads. The
method is compositional and the proof size is linear in the number of threads. The dif-
ficulty resides in summarizing the behavior of a thread in one transitive predicate.

Deductive verification of multi-threaded Java programs

Several deductive calculi for (different fragments of) sequential Java exist [Jacobs and
Poll, 2001c; Poetzsch-Heftter and Miiller, 1999b; von Oheimb, 2001a; Zee et al.,|2008;
Marché et al), 2004]. In contrast, the only implemented deductive verification sys-
tem for multi-threaded Java existing to date is—to our knowledge— Verger [ Abrahdm
et al.,2005]. The calculus is an adaptation of the Owicki-Gries method to Java, incor-
porating a proof method for CSP in order to reason about method calls as message
passing. The system generates verification conditions from programs augmented with
auxiliary variables and annotated with Hoare-style assertions. The verification condi-
tions are subsequently discharged in PVS. The system has a good concurrent language
coverage.

A recent and more accessible formulation is [de Boer, 2007], which replaces the
CSP calculus with proof theory of recursive procedures.

Separation Logic is another extension of Hoare Logic with operators for reasoning
about resource access, which allows for greater modularity of reasoning. The logic has
also been extended to handle Java and concurrency, and the latest development is a
“marriage” of rely-guarantee and Separation Logic [Vafeiadis and Parkinson, 2007].
The latter promises better modularity in dealing with rely and guarantee predicates.

Temporal logics

A huge body of work is available on verifying temporal properties of concurrent soft-
ware. This includes model checkers and even deductive proof systems (e.g., by Manna
and Pnueli [1991]). In contrast to using temporal logic, though, a proof system for
Dynamic Logic allows functional verification, i.e., full reasoning about data. This way
verification tasks can be tackled where not only safety or liveness but the input-output
relation of a concurrent program is of interest.

Concurrent Dynamic Logic

The only Dynamic Logic for a programming language incorporating concurrency is—
to our knowledge—the Concurrent Dynamic Logic (CDL) by Peleg [1987b]. He notes,
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however, that this particular logic “suffers from the absence of any communication
mechanisms; processes of CDL are totally independent and mutually ignorant”. Pe-
leg [1987a] gives two extensions of CDL with interprocess communication: one with
channels and one with shared variables. In both works cited, the focus is on studying
concerns of expressivity and decidability of the logics (communication renders the
logic highly undecidable). The issue of a calculus or program verification in general is
not touched.

Model checkers

Verification of concurrent systems has traditionally been—with a few exceptions—the
domain of model checking tools. This holds also for Java program verification, where
several very successful model checking frameworks have been established. Promi-
nent model checkers for Java programs are Bogor [Robby et al., 2003b] and Java
PathFinder [Havelund and Pressburger, 2000a].

These tools can check not only temporal but also functional properties. They em-
ploy very clever optimizations (abstractions) and can thus verify programs of sub-
stantial size. Many of these abstractions—like symmetry reduction—are sound and
do not come at the price of missed errors. Still, to guarantee termination of the model
checking process, a finite system model is required. Most of the time, this is achieved
by unsound abstraction, such as bounding the length of explored executions, number
of threads, number of loop iterations, size of initial heap configurations, etc. In this
setup model checking is very useful for detecting bugs, but provides no indication of
correct behavior under all circumstances.

A sound way to overcome the finite-model barrier is to use abstraction refine-
ment. Counter-Example-Guided Abstraction Refinement (CEGAR) is a relatively re-
cent technique that does so. It allows checking strong properties but must resort to
iterated manual model refinement in order to eliminate spurious counter-examples
appearing due to overapproximation. While CEGAR has been successfully used in
the verification of sequential C programs, to our knowledge, this technique has not
been applied to verification of programs in Java-like languages.

A comprehensive control flow model of Java concurrency is given in [Delzanno
et al., 2002]. The authors use a variant of Petri nets to model the control flow of con-
current programs. The nets are specifically tailored to treat the “partially non-blocking
rendez-vous” nature of Java’s wait () /notify () mechanism. The authors do not per-
form functional verification but have built a model checker that can check safety prop-
erties expressed in terms of control flow. Their Petri net representation is conceptually
close to ours, though we use full programs as transitions.

Yahav [2001] describes a system for verifying safety properties of multi-threaded
Java-like programs. The system (implemented in the TVLA framework) is an instance
of symbolic on-the-fly model checking, where first-order logical structures are used to
represent states of the program. It can cope with an unbounded number of allocated
objects by building conservative abstract descriptions of (multiple) program states
in 3-valued logic. Also, in the above paper, symmetry reduction is mentioned and
the author reports having obtained interesting results for an unbounded number of
threads.
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Static verifiers

Another broad category of verification systems for concurrent programs are static
verifiers. Static verifiers are tools that can automatically check program properties
by sufficiently approximating the program semantics. Many static verifiers allow the
users to improve the quality of the approximation by adding annotations to the code.

Per design, static verifiers are not geared towards input-output reasoning. They
are—in most cases—also neither sound nor complete. Still, such tools are very useful
for automated detection of concurrency-related problems in practice. There is also a
big potential in combining static verification systems with systems for full-functional
verification.

A prominent representative of this class of tools is ESC/Java [Flanagan et al., 2002],
an extended static checker for many types of properties. On the concurrency side this
includes inter-thread escape analysis, race condition detection, deadlock detection,
etc. There are also a number of dedicated static analysis tools for race condition detec-
tion. One of them is Houdini/rcc [Abadi et al.,2006], which is based on an elaborate
type system.

Such tools are aimed to check that access to object fields is guarded by locks and
that all threads adhere to a consistent locking policy. This check can be easy if the
object fields are protected by the lock associated with the object itself or a dedicated
object referenced by a final static field. More elaborated locking schemes might require
user annotation or are beyond the scope of the tools.

A class of its own in this category is the SPEC# system, which (in its deriva-
tive SpecLeuven) incorporates a “static verifier” for a concurrent object-oriented
language [Jacobs et al., 2006]. For one, verification with SPEC# guarantees the ab-
sence of data races and deadlocks. It also guarantees compliance of the program with
programmer-provided method contracts and object invariants. The approach is sound
but not complete.

A very interesting body of research has been produced bylGreenhouse and Scherlis
[2002b]. The authors have developed an annotation language to specify many impor-
tant aspect of multi-threaded programs together with a tool suite to statically check
them. The annotations include:

o effects (an upper bound on state a method reads and writes)

« aliasing intent. Unaliased data can be reasoned about sequentially

« locking intent. Programmers can associate locks with regions of state; the tool
verifies that state is accessed only when the appropriate lock is held. Programmers
can also declare that a method requires that a particular lock be held by the caller

o concurrency policy. Programmers can specify methods that can be safely exe-
cuted concurrently.

The authors also make it plausible that for lock-based programs, concurrency pol-
icy combined with models of locking intent is a suitable surrogate for representation
invariants.
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Alternatives to multi-threading

There are countless models for concurrent computation. We would like to mention
some alternatives to multi-threading that are interesting in our context.

One approach trying to overcome the difficulties inherent to Java threads is
JCSP [Welch et al.,2007; Welch and Austin]. JCSP is a Java library for concurrent pro-
gramming by means of Communicating Sequential Processes (CSP). CSP is a process
algebra developed by Hoare [1985]. It has a precise and—in contrast to Java threads—
compositional semantics. The programmer can reap these benefits by implementing
the sequential process parts in regular Java and composing them concurrently us-
ing the CSP operators provided by the JCSP library. A calculus for verifying JCSP
programs has been developed and implemented in the KeY system by Philipp Riim-
mer [Klebanov et al., 2005].

Some of the most massively concurrent applications available today are pro-
grammed in Erlang. Erlang is a functional programming language designed at the
Ericsson Computer Science Laboratory and popular in telecommunications. Indus-
trial Erlang programs may contain thousands of processes communicating by message
passing. A deductive Erlang Verification Tool (EVT) based on modal y-calculus was
built by Arts et al. [2003].

Concurrent objects offer an alternative concurrency model for object-orientation,
which has advantages over multi-threading, especially in highly parallel or distributed
architectures. Two examples of languages for programming with concurrent objects
are SCOOP [Arslan et al., 2006] and Creol [Johnsen et al., 2006]. A verification cal-
culus for Creol in KeY is currently being incepted.

Today, multi-threading remains the predominant concurrency programming par-
adigm in spite of its problems. Seriously facing its issues, though, the only prudent ad-
vice to application developers is to avoid rolling own multi-threaded solutions when-
ever possible. If concurrency is necessary, it is recommended to rely on patterns and
architectures developed by experts (and potentially verified), such as those in the
java.util.concurrent package of the standard Java library.
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MODL—A General but Overly Concrete Version

We start with a very general formalism which is quite close to the “machine” seman-
tics. The usefulness of this logic is not so much in its suitability for verification (this
will be addressed in the subsequent chapter), but in formalizing basic concepts of
thread-based concurrency. We define the syntax and semantics of a multi-threaded
Java-like programming language and a Dynamic Logic for reasoning about it. Along
the way we introduce such concepts as thread configurations, shared and thread-local
data, and a deterministic scheduler model.

4.1 Syntax of MODL

4.1.1 Threads and Multi-threaded Programs

The concurrent programming language that we consider is very close to a fragment
of multi-threaded Java. Its basic constructs are assignments, if-then-else statements,
while-loops, Java-like concurrency primitives, but also atomic blocks. Several threads
can execute a program concurrently. Thus, in contrast to the sequential programs in
KeY, a concurrent program is a passive template “without life”, until a thread configu-
ration is added. A thread configuration is a part of the program state describing which
threads are executing the program. Threads are given a unique identifier, convention-
ally called thread id (tid), which is a term of type Thread; they are in fact identified
with this identifier. In the following, we will denote D%, the carrier set of Thread,
as T.

In addition to concurrent programs, we also use sequential MODL programs. A
sequential program is, roughly, a concurrent program executed by a single thread.
The executing thread is explicitly identified in thread-local variables of the program.
This explicit thread identifier is also the major difference between sequential MODL
programs and sequential programs of Java Carp DL. In practice, we see sequential
MODL programs as sequential programs of Java Carp DL operating on non-standard
variables.
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4.1.2 Signature: Heap- and Stack-Allocated Data

We maintain the type hierarchy (= Sect.2.3.1) and the signature (= Sect.[2.3.2) defi-
nitions of the sequential JavA Carp DL. In particular, everything that is subject to as-
signment during program execution (variables, object attributes, arrays) is modeled
by non-rigid functions. We call these functions program variables. The full details of
this modeling in Java Carp DL were given in Note[2.4, though we summarize them
again in Table[4.Th.

Java CarDp DL does not distinguish between heap- and stack-allocated data. In
MODL this distinction becomes important. A variable on the heap refers to a sin-
gle value and assignments changing it are immediately visible to all threads.! On the
other hand, every thread has its own copy of each local variable (allocated on the
thread’s stack). An assignment to a local variable within one thread is not visible to
other threads.

Table[4.1b shows how program variables are handled in MODL. The difference to
Java CArD DL is in how (thread-)local variables are modeled (first line). The thread-
local variable v in a concurrent program refers to a series of values. When the program
executes, the unique value is identified by the context of the currently running thread.
In the logic, we can talk about the local variable values in different threads by using a
combination of variable name and thread id. All other variables (lines 2-4) are con-
sidered heap-allocated and are modeled exactly as in Java Carp DL.

This way the appearance of thread-local variables depends on the context. A
thread-local variable appears:

« in concurrent programs as: v
o in sequential programs as: v(t)
o in the logic (incl. updates) as: v(¢)

where t is a thread identifier.

Example 4.1 (Arity of thread-local variables). Consider the concurrent MODL pro-
gram
if (a>0)...

where a is a local variable. This thread-local variable a is modeled by a non-rigid
function of arity 1. In the program, however, it appears without parameters, i.e, has
the arity 0. Symbolic execution of this statement by a thread with id ¢ will lead to the
branch condition formula a(t) >0 appearing in the proof. At this point, the symbol a
appears with its full arity. <

Note 4.2 (Predefined symbols). As with Java Carp DL (= Note 2.4, Def.[2.13), we ex-
pect that a signature of MODL always contains certain predefined symbols (sched-
uler function symbols, enabledness predicate symbols, etc.). These symbols will be
introduced in following definitions, usually together with axioms constraining their
semantics. <

! The cross-thread visibility is actually subject to conditions of the Java Memory Model, which
we discuss in detail in Section|7.3]
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(a) in Java Carp DL

Program entity modeled by notation in logics
local variable v constant v

static field access Class.a constant Class.a

instance field access 0.a unary function a(o) oro.a

array access o [i] binary function

[1(o,i) orolil

(b) in MODL
Program entity modeled by notation in logics
local variable v (of thread #) unary function v(t)
static field access Class.a constant Class.a
instance field access 0.a unary function a(o) oro.a heap
access

array access o [i] binary function

[1(o0,i) orolil

Table 4.1. How program variables are modeled

4.1.3 Terms and Updates

Terms and updates are defined exactly as in Java Carp DL (= Sect.[2.3).

4.1.4 Syntax of Programs

First, we define sequential programs, which later serve as building blocks for concur-

rent programs.

Our sequential programs have several peculiarities:

o There is a stop statement, which does nothing and is never enabled. This state-
ment is of little use in the sequential case, but is used to model concurrent pro-
grams with several thread classes.

o There is an atomic block construct, which, again, only becomes useful when the
programming language is extended with concurrency.

o Every sequential program is identified with some thread executing it. The thread
id appears in all local variables as an (additional) argument.

« Assignments must not contain more than one heap access. This restriction is nec-
essary to faithfully model the semantics of concurrent Java assignments. We con-
sider assignments to be atomic in our language, while they indeed can be non-
atomic in Java. A program with more than one heap access in an assignment can
easily be transformed into a program satisfying the above condition by adding as-
signments that store the value of heap-allocated variables in fresh local variables.

« Conditions of if-then-else statements must be local variables not occurring in the
then- or else-part of the statement. This restriction is similarly easy to satisfy by
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adding assignments with fresh local variables. The fact that these variables—once
set—cannot change their value eliminates technical difficulties when specifying
execution path conditions.

Definition 4.3 (Sequential programs). The set of sequential programs is recursively
defined as follows. For all thread ids 7

(Stop)
stop is a program.

(Assignment)
ft, ..., t,)=t; is a program if
1. f is a non-rigid function symbol of arity n
2. t1,...,ty, as well as t are terms correctly typed w.r.t. f
3. the assignment contains at most one heap access (=>Table[4.1b).

(Sequential composition)
pq is a program if p and q are programs.

(Conditional)
if (v(1)) {p} else {g} is a program if p and g are programs and v(7) is a
thread-local boolean variable not appearing in p or q.

(Loop)
while (v(7)) {p} is a program if p is a program, and v(7) is a thread-local
boolean variable.

(Atomic block)
<«p>> is a program if p is a program.

(Lock acquire)
o(71).<lock>() ; isa program if o(7) is a thread-local reference-valued variable.

(Lock release)
o(7).<unlock>() ; is a program if o( 1) is a thread-local reference-valued vari-
able. <

Example 4.4 (Sequential program syntax). The following is an example of a concrete
sequential program executed by thread t:

o(t).<lock>();

a(t)=o(t) .sum;

o(t).sum=a(t)+e(t);

o(t) .<unlock>(); <

We now use the sequential programming language to define concurrent programs.
Conversely, the verification calculus breaks concurrent programs down into sequen-
tial fragments. The part of this process that builds a sequential program from a part
of a concurrent one is called sequential instantiation (= Def.[4.7).
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Definition 4.5 (Concurrent programs). The set of concurrent programs is defined
as follows. Every sequential program is a concurrent program under the following
transformation/conditions:

« all occurrences of loops must be within atomic blocks

« atomic blocks may not be nested

« atomic blocks may not contain locking operations

« thread indices are stripped from statements

« all function symbols representing local variables are stripped of thread identity
(number of arguments is one less than actual arity)

« the last statement of the program must be stop

« stop may only occur at the top level in a program. <

Example 4.6 (Concurrent program syntax). The following is an example of a concrete
concurrent program with one thread class:

0.<lock>(); a=o.sum; o.sum=ate; o.<unlock>(); stop; .
The following is an example of a concrete concurrent program with two thread classes:
x=1; stop; x=2; stop; .
<

The purpose of the final stop statement is to provide a “parking position” for the
threads that have run to completion. It also allows us to model parallel composition
as sequential composition. The latter program in the above example is conventionally
written as

x=1; || x=2; .

We will omit the final stop statement from concurrent programs whenever clarity is
not sacrificed.

Definition 4.7 (Sequential instantiation). If p is a concurrent program and 7 is a
thread id, then the sequential instantiation p*(*) is a sequential program built by aug-
menting every thread-local variable v in p by the thread id, giving v(7).

We define a sequential instantiation in an analogous manner also for terms. <

4.1.5 Program Positions, Control Variables, and Thread Configurations

Until now, we have dealt with syntactic programs, which are just templates for threads
to execute. Now we introduce means to describe which threads are executing a pro-
gram, and where exactly each thread is at any given moment. For this, we number all
atomic sub-programs in a program (statements and atomic blocks) from left to right,
starting with one. We call these numbers the positions of the program. Their intuitive
meaning is that if a thread is at a certain position, it is about to execute the correspond-
ing atomic statement when it is next scheduled to run. We will refer to the statement
at position i in a program p as p(i).
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Every position i is associated with a control variable pos(i), which is a set-valued
variable, not occurring in programs. The control variable lists exactly the tids waiting
to be scheduled at the resp. position. Together, the control variables specify the thread
configuration.

Definition 4.8 (Thread configuration). A thread configuration for a program p is a
non-rigid function symbol pos:

posP:{1,.. . size(p)} »27 .

In order not to clutter notation, we will omit the program index and just write pos.
The program it refers to is always clear from the context. <

Example 4.9 (Thread configuration notation). In this example we assume that thread
ids are integers. Then, ({3,17,5},{}, {2}) is an example of a configuration of size 3.
A configuration of size n is compatible with programs that have # positions.

We write (compatible) pairs of thread configurations and programs by inlining
the values of the control variables within the program. For example, the program

v=(x<10); if (v) {a=10; x=a+1}

together with the configuration ({5}, {3,4}, {1}, {2}), where four threads are active
and one has already terminated, is written as

{5}v=(x<10); if (v) {{3’4}a=x;{1}x=a+1;}{2} .

On the formula level, if U is an update and ¢|p is a program with an inlined thread
configuration, the formula

U(clp)¢
is shorthand for
{pos(1):=c1| ... ||pos(n):=c. } Ulp)¢ .
<

Note 4.10 (Disjointness of control variable values). In general, we expect to deal only
with disjoint values of control variables: every thread can be at only one place at the
same time. Nonetheless, a formula can describe a state where this is not true. To avoid
complications, we assume the following semantics for this case. If two control vari-
ables pos(i) and pos(j) (for i # j) have overlapping values A and B, i.e., AN B#@, then
the semantics of a program with this configuration is the same as of a program in a
state where pos(i) has the value A \ B and pos(j) has the value B \ A. <

Definition 4.11 (Threads in a program). The set of threads in a program Tids(p) is

Tids(p) =U1 pos(i)

for a program p with # atomic positions. Technically, this set is state-dependent, but
our programs can neither create nor destroy threads. <
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4.1.6 The Scheduler

Definition 4.12 (Scheduler). For each program p, the scheduler is (modeled by) the
predefined (= Note[4.2) non-rigid function (constant) symbol

schedP: > T u {1} ,

which says which thread is to run next in a given state. In order not to clutter notation,
we will omit the program index and just write sched in the future. The program to
which the scheduler function refers is always clear from the context. <

The interpretation of sched depends, in general, on program state, even though
we try to minimize this dependency in our program semantics. Different models, fur-
thermore, may interpret this function differently and, thus, have different schedulers.
The value that sched returns must, of course, be compatible with other components of
the state, i.e., the program variables and the control variables. To express this we first
define what it means for a thread to be enabled.

Definition 4.13 (Statement Enabledness). We introduce a non-rigid predicate sym-
bol enabled(s, t) capturing when a thread ¢ is enabled to execute a concurrent state-
ment s. We declare the predicate predefined (= Note[4.2)), and its values are given by
the following table:

Statement s Enabledness condition enabled(s, t)

stop false

assignment true

atomic block true

0.<lock>() o(t) .<lockcount>=0V o(t) .<lockedby>=t
0.<unlock>() true

<

Definition 4.14 (Thread Enabledness). The following non-rigid predicate symbol
captures when a thread ¢ is enabled in a program p (we will, again, omit this program
index in the future). The predicate is predefined (= Note[4.2) with the semantics con-
strained by the axiom:

enabled”() :{enabled(s, t), if teTids(p),

false, otherwise,

where s is the statement at which ¢ is waiting to be scheduled. Per Note[4.10/there is
at most one such statement. If there is none, the predicate evaluates to false. <

We now state the scheduler axioms.
1. The scheduler may only schedule existing threads. Which threads “exist” is given
by the control variables of the state for the program at hand:

schede Tids(p) . (4.1)
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The scheduled thread must be enabled. When a thread is enabled is defined in
Def.[4.14] At this point the scheduler depends upon actual program variables.

sched=t A t+1—> enabled(t) (4.2)

. If no thread is enabled, the scheduler must return L. This is the case when the

program has terminated or entered deadlock.

sched=1<«—

4.3
Vt.teTids(p) — —enabled(t) (43)

The scheduler is dependent upon a scheduling seed. A problem for a deterministic
scheduler model is the possibility that a program returns to a previously visited
state (a kind of déja vu). In this case, it would be unreasonable to expect that
the scheduler run the same thread as last time. This situation could occur, for
instance, if our programming language allowed non-atomic loops.

To keep our model general, we introduce yet another control variable: the schedul-
ing seed 0. The semantics of the programming language would use ¢ to guarantee
that as long as a program is running, it never passes the same state twice. For
non-atomic loops this would mean making o a ghost loop counter. Please note,
that our programming language is already restricted in such a way as to have the
no-déja vu property without resorting to an explicit seed.

There is yet another potential reason to have an explicit seed. The seed makes it
possible to relate two different runs of the same program. An example of this is
the atomicity criterion from Section Z1:

Vv.((a B w)(x=v)—Is.{o=s}Ha <f> w)(x=v)) ,

Here the seed is existentially quantified, and we take this opportunity to further
explicate its semantics. The scheduler behavior is not only dependent on the seed,
but it is dependent in such a way that it is possible to induce any legal schedule
by selecting the right seed. In other words, the seed variable is a substitute for
quantifying over schedulers, which is not possible directly in our logic.

In practice, however, the seed feature is rather esoteric. In the following, we omit
the seed from our further considerations.

In general, this is already everything we assume about a scheduler. Fairness” or other
scheduler properties are not built into our model. Such properties can, however, be
specified by adding further axioms restricting the function sched.

4.1.7 Formulas

The set of formulas is defined similar to Java Carp DL (= Def.[2.8). The only differ-
ence concerns modalities. MODL defines two concurrent and two sequential kinds of
modal operators.

? It should be noted that Java itself is only “statistically fair”.
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Definition 4.15 (Formulas of MODL). We amend the definition of formulas from
Java CArD DL (= Def.[2.8) as follows:

For each concurrent program p and every formula ¢, (p)¢ (the concurrent “dia-
mond” modality) and [p]¢ (the concurrent “box” modality, which is a shorthand for
—(p)—¢) are formulas.

If p is a sequential program and ¢ a formula, then (p)¢ (the sequential “diamond”
modality) and [p]¢ (the sequential “box” modality, which is a shorthand for —(p)-¢)
are formulas. <

Intuitively, a diamond formula (p)¢ (resp. its concurrent counterpart (p)¢) means
that the program p in the diamond must terminate (resp. all threads must terminate)
and afterwards ¢ has to hold. The meaning of a box formula is the same, but termi-
nation is not required, i.e., ¢ must only hold if p terminates. The formula v — [p]¢

has the same meaning as the Hoare triple {y}p{¢}.

4.2 Semantics of MODL

Unsurprisingly, we use Kripke structures (introduced in Sect.2.4) as semantic domains
to interpret MODL formulas. The semantics of terms and updates remains unchanged
(Sect.[2.4.3 and[2.4.2), while the semantics of formulas is modified from Sect.[2.4.4 to
introduce new concurrent modalities. The major part of this section concentrates on
defining the semantics (transition relation p) of the concurrent and sequential pro-
gramming languages of MODL.

Definition 4.16 (State variation). If s€ S is a state and u € Updates is an update, then
s"=s[u] is a state variation (i.e., also a state). Formally, s’ = (val;u) (s). This means that
s'=(D, 8, T) isidentical to s= (D, 8, T) except for the interpretation mapping, which
is changed according to the update u. <

4.2.1 Semantics of Sequential Programs

As in Java Carp DL (= Def.[2.13), the semantics of sequential programs is given by
a transition relation on states p;(p)cS?, for any valid sequential program p. Since
programs are deterministic, the relation is actually a partial function: p;(p): S—S.

Definition 4.17 (Semantics of sequential programs). The semantics of sequential
programs p;(p) is the smallest relation satisfying the following conditions. It does
not depend on the scheduler.

(Stop)
p1(stop) =id

(Atomic block)
p1(<p>)=pi(p)
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(Assignment)
(s,s"Yepi(f(t1, ..., t,)=t)iff the statement f(f,..., t,):=t interpreted asa Java
assignment does not throw an exception® and s’ =s[f(t, ..., t,):=t].

(Sequential composition)
5,8 )ep; iff (s,s"")epi(p) and (s”,s") e p1(q) for some state s”’.
P1lpq pilp pilq

(Conditional)
(s,s")epi(if (v(t)) {p} else {q}) iff either
(1) val;(v(¢))=TRUE and(s, s") e p1(p), or
(2) val;(v(t))=FALSE and (s,s") €p1(q).

(Loop)
(s,s")epi(while (v(t)) {p2}) iff there is an neN and there are states so, ..., s,
with s=s; and s’ =s, such that
(1) for 0<i<n, val,(v(t))=TRUE and (s;, s;+1) €p1(p), and
(2) val, (v(t))=FALSE.

(Lock acquire)
(s,s")ep1(0(¥) .<Lock>()) iff either
(Case 1: the lock is free)

val;(0(t) . <lockcount>) =0 and val;(0(#) . <lockedby>)=1
or

val;(0(t) . <lockcount>)>0 and val;(0(t) . <lockedby>) =val(t)

and, in either case,
, [[o(®).<lockcount>:=0(t).<lockcount>+1]|
s'=s
o(t) .<lockedby>:=t
or
(Case 2: the lock is taken)

valg(o(t) .<lockcount>)>0 and val;(0(#) .<lockedby>) #val;(t) while
s'=s.

(Lock release)
(s,s")epi(o(®) . <unlock>()) iff either
(Case 1: lock depth not yet exhausted)

val;(o(t) . <lockcount>)>1

vals(o(t) . <lockedby>)=val(t)

s"=sfo(#) .<lockcount>:=0(#) .<lockcount>—1]
or

3 We do not give a formal definition, since we want to avoid formalizing here major portions of
the JLS. In practice, when an exception is thrown is exhaustively formalized by the sequential
KeY calculus.
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(Case 2: lock depth exhausted)

val;(0(t) .<lockcount>)=1

val;(0(t) . <lockedby>)=val(t)
, [lo® .<lockcount>:=0||
- H o(t) .<lockedby>:=1 H

4.2.2 Semantics of Concurrent Programs

The semantics of concurrent programs is given by a transition relation on states
p(p)cS?, for any valid concurrent program p. As explained previously, even our
concurrent programs are deterministic (by means of an underspecified determinis-
tic scheduler). Thus, this relation is a partial function: p(p): S—S. We will define p
below.

To make specifying the semantics of if-statements easier we assume that every
thread steps through both the then- and the else-part of all if-statements. Yet the
thread can only change the state if it is in the “right” part and executes NOPs oth-
erwise. The path condition tells us if we are in the right part.

Definition 4.18 (Path condition of position in program). Let k be a position of an
atomic sub-program in a non-atomic program p. Let this position occur within the
scope of n>0 (nested) if-statements in their then- or else part. Let v;,..., v, be the
conditions of these if-statements.

Since, by definition, the local variable v; does not occur in the then- or else-part of
the ith if-statement, its value is not changed during the execution of the if-statement
after it has been evaluated.

We define the path condition of k in p as the formula:

path(k,p,tid)=B; A...AB, ,

where

- (vi(tid)=TRUE), if k is in the then-part of the ith if-statement
" (vi(tid)=FALSE), if k is in the else-part.

<

Thus, a thread ¢ will execute the atomic program at k within p iff path(k, p, t) holds.
Example 4.19. The path condition of the statement 1=r; in the program

if (a) {if (b) {3} else {l=r;}} else {}

for a thread ¢ is
a(t)=TRUE Ab(t)=FALSE .
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Our next goal is to define the semantics of concurrent programs p(p). The base for
this is the semantics of sequential programs p; (p). We use it to describe the first step in
the execution of a concurrent program, which is identified by the scheduler function.
All further steps of the concurrent program are handled by recursively repeating the
process.

Definition 4.20 (Semantics of concurrent programs). The semantics p(p) of a con-
current program p is inductively defined as the smallest relation such that:

o (s,s)ep(p) if no thread of p is enabled in s, i.e., sched=1 in s.
« (s,5")ep(p) if some thread of p is enabled in s , and
(1) sched=tid in s
(2) tidepos(i) in s (there is always exactly one such i, cf. Note[4.10)
(3) q is the atomic sub-program at position pos(i) in p
(4) sepath(i, p, tid),
(5) (s,5")epi(q*) for some state s”’
(6) valyr (pos(i)) =val(pos(i)) \ {tid} and
valg: (pos(i +1)) =vals(pos(i +1)) u {tid}
?) (5,5 ep(p)
o (s,s")ep(p) if some thread of p is enabled in s , and
(1)-(3) as above
(4) s¥path(i,p, tid),
(5) there is a state s” =s[pos(i):=pos(i) ~ {tid} || pos(i +1):=pos(i +1) v {tid}]
(©) (5,5 ¢p(p) <

4.2.3 Semantics of Formulas

Now, we can define the semantics of formulas with modalities in a way similar to

Def.[2.21]

Definition 4.21 (Semantics of formulas).

(Modalities with concurrent programs)

se(p)p iff (s,s") ep(p) for some state s with s’ = ¢.
(Modalities with sequential programs)

se(u)¢ iff (s,s") ep1(u) for some state s” with s’ = .

We say that a Kripke structure is a model of a formula ¢ iff si= ¢ is true in all states s
of that structure. A formula ¢ is valid if all Kripke structures are a model of ¢. <
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MODL—A More Verification-Friendly Version

“If it can be programmed, it can be verified” This adage was not only a constant en-
couragement in the development of this proof system, but also a quite concrete guid-
ance. Practice makes it clear that programmers do not reason about all possible in-
terleavings when programming a multi-threaded application. They rather consider
equivalence classes, since many interleavings are not significantly different. A verifi-
cation system can and should make use of this circumstance, and a crucial factor in
building the equivalence classes is thread symmetry.

In this chapter we refine the notion of thread configuration and the corresponding
scheduler model given in the previous chapter. The refined model allows us to summa-
rize many symmetric program executions in classes, to reason about an unbounded
number of threads, and altogether to verify multi-threaded programs with a feasible
effort. The chapter is concluded by combinatorial results relevant to multi-threading.

5.1 Do Not Enumerate—Describe!

The logic presented in the previous chapter already gives a complete account of multi-
threading for the chosen language fragment and even allows symbolic execution of
programs. It has two deficiencies though:

o The threads involved are explicitly enumerated, even when the concrete ids are
actually not important. This circumstance makes it impossible to make statements
about an unbounded (fixed but unknown) number of threads.

o Transitions are always totally ordered (resulting in proof branching), even if they
are independent. Consider two threads 7; and 7, that are ready to be scheduled at
the same position. Under the enumeration scheme, we have to perform a case dis-
tinction, which thread will run first, even if this distinction is not important later
in the proof. Since we are dealing with symbolic data, this distinction is almost
never important. The up-front distinction is inefficient and—again—prevents us
from verifying programs with an unbounded number of threads.
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To overcome these obstacles, we have developed a more refined logic where config-
urations are not enumerated but described algebraically. Efficient laws for reasoning
about these descriptions complete the picture. The basis for the efficiency gain is sym-
bolic thread symmetry.

Extending Symmetry Reduction

(a) concrete data

(b) symbolic data

Figure 5.1. Explored thread trajectories in a program

Symmetry reduction is a well-known idea that different threads with the same
properties need not be distinguished. Most model-checking frameworks implement
some sort of symmetry reduction to prune the state space. This feature is described
prominently, for instance, in [Robby et al., 2003¢] (the Bogor tool) and [Yahav, 2001]
(on-the-fly model-checking with TVLA). However, detecting symmetries can be ex-
pensive, and most tools used in practice only detect symmetry when several threads
have exactly the same concrete local data and program counter. Such a situation is as
well as not present in the scenario depicted in Figure/5.1(a).

In a deductive verification system we can give the idea of symmetry reduction a
new twist. We want to identify not just threads with the same local data, but threads
with similar proof shapes. Indeed, when executed symbolically, most threads of the
same thread class have similar proof shapes (Figure[5.1(b)), as symbolic execution
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explores all possible paths through the code. The number of such paths is finite and
relatively small; it is bounded by the shape of the program text.!

Having paid the price of sequential symbolic execution in case distinctions, we
might now as well reap the benefits in the concurrent case. We can—to a large extent—
eliminate the necessity to consider different orderings of threads that have reached the
same position within the program.

Example 5.1 (Symbolic symmetry reduction). Consider two threads 7; and 7, that are
ready to execute the statement

if (1==0) a else 8,

where 1 is a thread local variable. In the proof schematically shown in Figure5.2(a),
the distinction whether 7; or 7, runs first is performed up-front. Figure[5.2(b) shows
how symmetry reduction allows to postpone this choice by hiding it in the scheduler
function. Here 7,(1) is the id of the thread to run first, and the following proof is
implicitly quantified over all possible values of 7;(1). In most cases this quantification

1(m<1)>:oA1<m<l>>#o

(a) without symmetry reduction (b) with symmetry reduction

Figure 5.2. Symbolic execution trees for two threads 7; and 7, ready to execute the statement
if (1==0) «a else f

can be easily eliminated by applying algebraic laws about permutations and similar
reasoning. In these cases symbolic symmetry reduction is successful. Otherwise, one
or several case distinctions have to be performed on 7 (1). Since no information about
thread ids is ever removed, no unsoundness is introduced in the process. <

Symmetry reduction eliminates proof complexity caused by different possible or-
derings of threads at one interference point. To deal with the number of interference
points, one applies standard techniques for identifying atomic regions based on lock-
ing and data encapsulation. To deal with the possibly unbounded number of threads
in the system (“unbounded concurrency”), one applies induction. Together, the three
components (symmetry reduction, atomicity, induction) make deductive verification
of concurrent systems feasible.

! Remember that we only consider atomic loops, which can be compressed into a single (com-
plex) computation step.
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Expressing Unbounded Concurrency

In our program model we pretend that each thread linearly traverses the program:
There is no jumping back (except within an atomic loop), and each thread visits each
position at most once (never, if it gets stuck on its way in an atomic loop or trying to
acquire a lock). This means, however, that threads can end up in the “wrong” branch
of an if-then-else statement. To preserve the original semantics of the program, we
arrange that the state is not changed by the program while its control flow is in the
wrong place.

We have now “forced” each thread to visit each program position at most once.
Assuming threads with tids 1,..., n, it is clear that for every position i, there is a
permutation 71;: {1...n} —{1...n} that describes the order in which the threads are
scheduled at this position (should they reach it).

Given these permutations, it is sufficient to know how many threads are at each
position. This fixes the exact configuration as well and allows writing configurations
with m positions as (7o, 7ky, . . ., Wik ), Where 7y, . .., 7, are terms representing
the permutations and ki, . . ., k,, are terms representing the number of threads.

Describing Thread Configurations

Definition 5.2 (Thread configuration). Configurations with explicit tids were intro-
duced in Def. We now overload this term with the following definition. Unless
explicitly stated otherwise, in the following, all configurations refer to the following
formulation.

A thread configuration for a program p is a family of non-rigid function symbols

rrf):N—ﬂT for i€{0,...,size(p)}
together with a non-rigid function symbol
posP:{1,.. . size(p)} >N .

7; is a permutation of the set of tids T, encapsulating the scheduler decisions at posi-
tion i. pos(i) is the number of threads currently available for scheduling at position i.
<

In order not to clutter notation, we will omit the program index and just write 7;
and pos. The program they refer to is always clear from the context. As before, we also
often present configurations as inlined within programs. This time we limit ourselves
to the values of pos. Since we never deal with concrete values of 7;, we omit them
when stating configurations and simply imply their existence.

Example 5.3. Consider a program of size four with 2, 3, 5 and 7 threads waiting at each
position respectively. The thread configuration of this program consists of the non-
rigid function pos (with pos(1) =2, pos(2) =3, pos(3) =5, pos(4) =7), and the five non-
rigid “permutation” functions 7y, . . ., 14 (Whose values we do not know). Altogether
there are 17 threads, which we can represent as {7y(1), ..., m(17) }.
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If we concentrate on position 1, we can see that 3 + 5 + 7=15 threads have already
passed this position and the next one to execute will be the 16th in count. If we now
concentrate on position 2, we can see that 5 + 7=12 threads have already passed this
position and the next one to execute will be the 13th in count. <

Definition 5.4 (Post(+)). For a given program p of size n (implied) and a position i <#,
we define a predefined (= Note[4.2) non-rigid function symbol Post(i) with the se-
mantics fixed by:

Post(i) pos(i) if i =n, or if the statement at position i in p is stop
ost(i)=
pos(i) + Post(i+1) otherwise.

This is the number of threads of one thread class in p, which have already passed
position i in the current state. In absence of stop statements in p (i.e., if there is only
one thread class), the situation is simpler:

Post(i)=pos(i+1) +...+pos(n) .
<

Example 5.5 (Example[5.3continued). So, in our example Post(2) =5 + 7=12. The next
thread scheduled at position 2 is the (Post(2) + 1) =13th thread. But exactly which one
is the 13th? Here the permutation functions come into play. The exact tid of the thread
scheduled to run next at position 2 is given by 7, (Post(2) + 1) =m,(13). This way we
can talk concisely about thread orderings even if we don’t know them exactly. <

The same way we can write configurations where the number of threads is not
a concrete number but a variable. This very expressive form of writing allows us to
formulate rules that do not take the scheduling order into account, as it is hidden
inside the permutation functions. What we need for a complete calculus are then the
usual algebraic properties of permutations and axioms of their interplay.

Asmentioned above, the posand the 77; functions completely fix the thread lineup.
We now state exactly how, by defining the function pos which in any given state pro-
duces an enumerative configuration in the sense of Def.[4.8]

Definition 5.6 (Configuration concretization). A concretization function (of size n)
is a predefined non-rigid function symbol

posy:{l,...,n}—>2T

with the semantics fixed by

posy(i):{ﬂ,-l(l), ..o, i1 (Post (i - 1))} N {71,»(1), ey ﬂi(POSt(i))} .
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The intuition behind this definition is the following. The threads waiting at position i
are exactly those that have already passed the position i — 1, but excluding those that
have already moved on past i.

Example 5.7 (Examplel5.3 continued). We now translate the four integers and the five
permutations from above into an enumerative 4-set configuration:

mo(1), . -~,ﬂo(17)} \ {nl(l),...,nl(w)},
izz:g))’, m(1),. ~-:7T1(15)} \ {772(1), o nz(lz)},

pos,(3), w),..., 712(12)} N {n3(1), . ..,713(7)},
pos(4)

71’3(1), ooy 7T3(7)

<

Note 5.8 (Configurations in physics). Different ways to formalize thread configurations
have their parallels in statistical mechanics, which studies configurations of particles
in discrete energy states. Under Maxwell-Boltzmann assumptions, the particles are
always distinguishable, while the Bose-Einstein configurations do not distinguish be-
tween particles in the same state. Thread configurations with explicit tids have their
counterpart in the former, while the abstract configurations correspond to the the lat-
ter. <

5.2 New Scheduler Formalization

Since we are aiming towards identifying all threads that have reached a certain po-
sition within the program, we wish to decompose the scheduling function into two
components: the position choice function P and the thread choice functions ;. In the
following we will be restating the important definitions of concrete MODL primarily
in terms of positions instead of in terms of threads.

The main component of the new scheduler formalization is the position choice
function P . It returns the position from which the next thread will be scheduled in
the current state—or 0, if no enabled positions (= Def.5.9) remain.

Putting P together with the permutations introduced in the previous section, we
obtain the following decomposition of the scheduler function (for non-disabled con-
figurations):

sched=nqp(Post(P) +1) . (5.1)

Position choice function characterization

In this section we state axioms for the position choice function, but first we need to
define when a position is enabled. A position i is enabled in a configuration iff its tid
set is not empty and its statement is enabled (= Def.|4.13) for some thread at this
position.
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Definition 5.9 (Position enabledness). We introduce a non-rigid predicate sym-
bol enabled? (i) capturing when a position i is enabled in a program p (which we will
omit as it is clear from the context). We declare the predicate predefined (= Note[4.2),
and its semantics is constrained by the following axiom:

enabled(i)=3t. (teposy(i) A (path(i, p, t) —> enabled(p(i), t))) .

<

Note 5.10. Note that for all statements except lock acquire the quantifier can be triv-
ially eliminated. The same applies in the common case that all threads try to acquire
the same lock (in absence of reentrant locking). These are exactly the cases of full
symmetry between threads.
For instance, considering an assignment, the enabledness condition becomes sim-
ply:
pos(i)>0 .

<

Having defined position enabledness, we now axiomatize the position choice
function. To achieve an adequate scheduler representation, the position choice func-
tion is subject to the following axioms:

o Only valid positions (or zero) are returned:
0< P<size(p). (5.2)

This axiom effectively amounts to a disjunction over the positions of p, which dur-
ing the proof gives rise to a case distinction. Note that size(p) is never returned,
since the last position must be a stop, which is never enabled.
« The non-zero values of P are further restricted to the positions enabled in a given
configuration:
P+0—>enabled(P) . (5.3)

o P may only return 0 if no position is enabled:

P=0—

Vi.(1<i<size(p) —> —enabled(i)) . G4

Thread choice function characterization

Each thread choice function 7; is in every state an injective mapping from N to the
set of tids T (we assume there are infinitely many thread ids). The injectivity is based
on the fact that no thread can pass the same position twice as we have ruled out non-
atomic loops. Formally:

ﬂk(i)ZTL'k(j) iﬁiZj . (5.5)
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While it is our goal to assume as little about the thread choice functions as possible,
in reality they are not completely arbitrary. The thread choice function at position i
can only choose threads available at this position|

mi(Post(i) + 1) €pos (i) . (5.6)

This constraint ties the choice at position i to the choices made at previous positions.
Our calculus uses the axioms presented here to gather a constraint on the scheduler
while exploring the behavior of the program.

Note 5.11. For efficient reasoning, the formula 7; (Post(i) +1) € pos (i), which is short-
hand for

7t; (Post(i) + 1)6{71,»1(1), .. o>mi—1(Post (i — 1))} N {n,-(l), ceo ni(Post(i))} ,

can be simplified. The subtracted term can be safely dropped if we recall injectivity
of 7;. Together with (5.5) it is sufficient to demand that:

7; (Post(i) + 1)6{71,»1(1), ..o i (Post(i - 1))} .

<

Finally, the threads of different thread classes are never confused. If there is a stop
statement at position b in a program, then

Vi,j,x,y.(i<b/\j2b —>7Ti(x)7€71j(y)) .

New definition of program semantics

In parallel to Def.[4.20, we now state a new definition of program semantics.

Definition 5.12 (Semantics of concurrent programs). The semantics p(p) of a con-
current program p is inductively defined as the smallest relation such that:

o (s,s)ep(p) if no position of p is enabled in s, i.e., P=01in s.
« (s,5")ep(p) if some position of p is enabled in s , and
(1) tid=np(Post(P) +1) in s
(2) q is the atomic sub-program at position P in p
(3) sepath(P, p, tid),
(4) (s,s") epr(g* (") for some state s”’
(5) valg (pos(P)) =val;(pos(P)) —1and
valg: (pos(P +1))=val;(pos(P+1)) +1
©) (+",5")ep(p)
o (s,5")ep(p) if some position of p is enabled in s , and
(1)-(2) as above
(3) st path(P,p, tid),
(4) there is a state s” =s[[pos(P) :=pos(P) — 1||pos(P +1):=pos(P+1) +1]
(5) (5",5')<p(p) <



5.3 Combinatorial Effects of Symmetry Reduction 75

5.3 Combinatorial Effects of Symmetry Reduction

A calculus based on symbolic execution uses case distinctions to explore different
program schedules. The number of cases is one measure of the calculus’ efficiency.
This number is roughly equal to the number of thread interleavings considered.

Our employment of extended symmetry reduction allows us not to distinguish
between threads with the same program counter and thus reduce the number of in-
terleavings considered (at the price of having to reason about permutations). One
question to be asked is how high a reduction we achieve. In the following we survey
combinatorial results for multi-threaded programs and provide statistics on the num-
ber of interleavings (without symmetry reduction), the number of configurations and
the number of interleavings when employing symmetry reduction.

Counting Thread Interleavings

How many different interleavings can a multi-threaded program exhibit? A total of T
threads: t,,. .., tr, each with s;,1<i < T atomic statements produces:

I(sl,...,sT):(

51+...+5T)

S15e.5ST

interleavings. This multinomial coefficient [Cohen, 1978] counts the number of ways to
put Ys; unique balls into T boxes, where each box can hold s; balls. Boxes correspond
to threads in our model, while balls are numbered 1to }°s; and represent all the steps
in the common schedule.

This number can be computed in the following way, which models successive fill-
ing of the boxes:

I(s,....87)=

(51+52+...+5T) (51+52+53)(51+52) (sp+...+s7)!

ST $3 $2 sleeest!

In the uniform case, where each of T threads has S statements, the number of inter-
leavings is:

(ST)!

(SHr

I(S,...,8)=
———
T
Counting the Number of Thread Configurations

First, we want to count configurations where threads are always distinguishable. A
program with S atomic statements requires a thread configuration of size S + 1. The
number of such thread configurations with identity is:

(S+1)T ,
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since each unique thread can choose from S+1 positions independently. This is known
as the number of redundant permutations in combinatorial theory.

Now, we turn to the case where we do not distinguish threads with the same pro-
gram counter. For this we define (;) as the number of ways to put T indistinguishable
balls into S labeled boxes of unlimited size (redundant combinations). It is known [Co-

hen, 1978, Theorem 15] that
<S> B (s +T - 1)
/' \ T '

The total number of thread configurations without identity of size S + 1 is thus:

Cr-Cr)

Furthermore, for any given k <S, the number of configurations with k enabled posi-

OG-

The key to this calculation is selecting k positions and putting a ball into each of them
first. The rest of the balls can be distributed between these k selected and the last
position.

Counting the Cases Considered by the MODL Calculus

Finally, we consider what effect symmetry reduction has on the number of interleav-
ings and thus on the case distinctions performed by the calculus. This counting prob-
lem is closely related to counting problems over other domains such as lattice walks,
Dyck paths, Young tableaux, etc. [OEIS A060854, 2008].

Letus consider a program of S statementsand T threads without identity. Further-
more, we abstract from data, i.e., assume that all path conditions are true. In this case,
program executions (interleavings) can be modeled as S-dimensional lattice walks
(with positive unit steps) from (0,...,0) to (T,..., T) such that all the points on the
walk satisfy x; 2x,>--- 2 x5 20.

The number of such lattice walks is known to be equal to the multidimensional
Catalan number [OEIS A060854,2008] Cs 7, where

Lot 1)!
CSl(s+ D)l (s+ t=1)!

(st)! .

s,t

In particular, for s=2 (or t=2, as C, ;= Cy,), C,,; corresponds to the “regular” Catalan
numbers [OEIS A000108,2008].
Asymptotically, the Catalan numbers grow “only” exponentially:
411
Can(n+1)
This can be derived from the Stirling approximation of n!.
The first few multidimensional Catalan numbers are charted in Table 5.1

C2,n
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s 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1
5 14 42 132 429 1430
42 462 6006 87516 1385670
14 462 24024 1662804 140229804

42 6006 1662804 701149020
132 87516 140229804
429 1385670
1430

O 00 NN U R W N
e i

Table 5.1. Multidimensional Catalan numbers Cs ;

Conclusion

The above calculations show that symmetry reduction lowers the number of inter-
leavings that have to be considered from superexponential to “just” exponential. The
number of case distinctions to be made remains after all too high for using the cur-
rent MODL calculus as a model checking tool. This, however, is not detrimental to our
goals, as the main advantage of symmetry reduction remains. It opens the possibility
to make logical assertions that are parametric on the number of threads (without re-
quiring explicit thread enumeration), thus paving the way to using induction on this
parameter.
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A Calculus for MODL

Most of our lives are about proving something,
either to ourselves or to someone else.

6.1 Calculus Overview

The MODL calculus is built from the following new components:

A.

B.

rules for symbolic execution of concurrent programs (interleaving and symmetry
reduction engine) (= Sect.[6.3)

rules for reasoning about scheduling functions (permutations) produced by Com-
ponent A (presented as axioms in Sect.[5.2)

C. concurrent invariant rule (not needed for completeness) (= Sect.[6.5)
D. unfolding rules for translating Java to MODL (= Sect.[6.2)
as well as the following pre-existing components of the sequential calculus (presented
in Sect.2.5.6):
1. FOL rules, reasoning about equality and arithmetics, induction

2.

W

rules for symbolic execution of atomic sequential program fragments produced
by Component A
invariant rule for sequential loops

. method contract rules (further modularization)
. rules for simplification and application of updates, which are produced by Com-

ponent 2 (efficient aliasing treatment)

The Components 1-5 have been borrowed (with very minor modifications) from the
stock KeY system.
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6.2 Program Unfolding: Translating Java to MODL

The calculus given later in this chapter operates on MODL programs. Here we de-
scribe a mapping from Java programs satisfying the requirements given in the intro-
duction to MODL. The mapping is such that the Java program and its counterpart in
MODL perform the same state transition: if started in the same state, both will either
terminate in the same state or not terminate at all. Thus, if the MODL program can
be verified, then the original Java program is correct as well.

Translating Java to MODL is a two-step process. First, we completely unfold the
Java program using a special rule set in KeY. The result is a more fine-grained Java
program that is semantically equivalent to the original. Then, we use a simple trans-
formation from the unfolded program into MODL.

Unfolding the Java program

The basis for the unfolding process is the calculus for sequential Java programs de-
scribed in Sect.[2.5.5.

For a concurrent Java program «, the unfolded Java program o’ satisfies the fol-
lowing conditions:

1. o is trace-equivalent to a (w.r.t. vocabulary of «)

2. all occurring expressions are in normal form, i.e., it is no longer possible to factor

out subexpressions by means of fresh local variables

each assignment is atomic (i.e., updates at most one heap location)

the conditions of if-statements and loops are fresh local variables

5. the conditions of if-statements do not occur in the then- or else-part of the state-
ment

6. method calls are inlined, if necessary together with extra conditionals to simulate
dynamic binding.

&~ w

To achieve this, we utilize the rules that are already a part of the sequential KeY cal-
culus. Examples of sequential unfolding are given in Sect.[2.5.5. These rules introduce
fresh local variables and additional assignments. Examples of concurrent program
unfolding are given in Table|6.1 Furthermore, instance creation is already modeled
by assignment to ghost fields in the KeY calculus, and method implementations are
inlined.

We have manually inspected the KeY rule base identifying the rules that per-
form the unfolding. Syntactically, these rules can be very closely approximated as
the rules that match programs, but do not produce updates or case distinctions.
For instance, the unfolding rules include the rule ifElseUnfold, but not the rule
ifElseSplit (= Sect.[2.7.2). Minor fine-tuning was subsequently performed to ensure
the atomicity condition of assignments. We have also checked that no rules “swallow”
intermediate states, i.e., perform optimizations like replacing i++;i--; by a NOP.
The resulting rules were then pooled in a special unfolding strategy of the prover.
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Java statement unfolded form

0.a=u.at+; v=u.a; u.a=v+l; o.a=v;

if (0.a>1) {a} else {f} v=o0.a>1; if (v) {a'} else {[3'}
while (o.a>1) {a} v=0.a>1; while (v) {a’ v=0.a>1;}
synchronized (o) { « 3 0.<lock>(); o« o.<unlock>();

v is in each case a fresh local variable of appropriate type

" 'The correct way to unfold a synchronized block is actually
try {o0.<lock>(); a} finally {o.<unlock>();},
but since we do not allow catching exceptions at the moment,
we are using a simpler version.

Table 6.1. Examples of unfolding Java programs

Translating unfolded Java into MODL

After the program has been completely unfolded, it almost satisfies the syntax require-
ments of MODL. The biggest missing piece is the atomicity requirement for loops. The
user must declare code sections containing loops as atomic. More atomic sections can
be introduced in order to improve proof performance. In both cases, one needs to
carry out further justification (= Sect.[Z1). Finally, it remains to compose different
thread classes by means of stop statements, add initial thread configurations and, in
general, formulate the proof obligation.

6.3 The Basic Rules of Concurrent Execution

The calculus presented in the following makes extensive use of the axioms given in the
previous two chapters. The axioms are the constraints on the interpretation of prede-
fined functions and predicates given in their definitions. These axioms can be added
to the antecedent of a proof goal at any time. Among symbols subject to axioms are
enabledness predicates (= Def.[5.9), path conditions (= Def.[4.18), scheduler func-
tions (= Sect.[5.2), etc.

Figurel6.1 shows the main rule of the MODL calculus. The rule shows how to sym-
bolically execute any statement that is not a concurrency primitive. In the rule, « and
w denote unchanged program parts, and i is the position of the executed atomic state-
ment S (in the overall program p). $*(“) is the sequential instantiation (= Def.[4.7)
of S for the currently running thread tid, which is an abbreviation for:

tid=m;(Post(i) +1) .

The formula path(i, p, tid) is the path condition (= Def.[4.18) of the statement S in p
for thread tid. P is the position choice function, and the first premiss encodes the
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== P=i
path(i,p, tid) = (8“0 Fst T g
o Ptk id) = (ot sted y)o
€p
. ([oc{"} ?{k} w])¢

position i in p

Figure 6.1. The concurrent symbolic execution rule

scheduler decision to schedule a thread at position i next. Since the scheduler behavior
is in general unknown, this rule is usually applied after a case distinction over possible
values of P. These are, in turn, dictated by the scheduler axioms (= Sect.[5.2).

After applying the step rule, the sequential program S*(9) has to be tackled by
the rules of the sequential KeY calculus. Eventually, it will be reduced to a series of
updates and case distinctions.

Finally, if no position is enabled in a configuration, the program does nothing and
the modality can be removed altogether. The following rule applies:

= P=0 =¢

=(r)¢

empty-program

A Simple but Complete Verification Example

The following example is popular in the field (e.g., [Abadi et al., 2006]), since it already
exhibits a large part of issues inherent to thread-based concurrency.

Example 6.1. Consider a financial transaction system that processes concurrent in-
coming payments for an account. We wish to establish that all payments end up de-
posited, regardless of their number and the order in which the threads are scheduled.
This can be expressed by the following proof obligation, where sum is a static variable
and e is a thread-local variable containing the payment amount.

Vn. {smn:zO}({"}<<sum=smn+e ; >>{})(smn:2n: e(m(i))) (6.1)

i=1

Note that for presentation purposes we have abused the programming language
by writing an assignment with two heap accesses. This shorthand is permissible here,
since the assignment is protected by an atomic block. This protection ensures that the
assignment a=sum+te; sum=a; (as the above is properly written) does not lead to an
atomicity failure (sometimes known as “race”).

As the first step of the proof, we eliminate the universal quantifier from the
conjecture, replacing # by a Skolem constant 7,. Then we apply the induction rule
natinduction (= Sect. [2.6.4). The induction hypothesis is that ny — k transactions
have been completed, while k remain (k is the induction variable, 0< k<ny):
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no—k no
{sum:= Z_; e(m(i))}({k}<<sum=sum+e ; >>{”°7k})(sum:Z e(mo(i)))

Step case

Now we have to prove that the above holds for k + 1 transactions, i.e.:

no—k—1

—k—
{sum:= Z

i=1

e(m (i)} {k+1}<<sum—sum+e >>{”°_k_1})(sum:§;e(r[o(i)))

We apply the step rule once. There is only one position and thus one relevant per-
mutation, namely ;. The position is enabled (as k +1>0), and there is indeed only
one possible choice P=1 (per Axioms (5.2) and (5.3) on page[73). Since there are no
if-statements, the path condition is simply true. The only remaining goal is thus:

no—k-1

k—
{sum:— Z e(r[l( ))} sum—sum+e *(m(”n—k))>

i=1 no
({k} <Ksum=sum+e; >>{"”7k})(sum: Y e(mo(i)))
i=1

We expand the definition of sequential instantiation. Only the thread-local variable e
is affected:

0o—k—-1

{sum::n > e(m(i))}{sum=sum+e (m(ny - k)) ;)

i=1 o
({k} <Ksum=sum+e; >>{"”7k})(sum: Y e(mo(i)))
i=1

We execute the sequential instantiation of the assignment symbolically using the se-
quential assignment rule. This generates the update {sum:=sum+ e(m(no—k))}.
We have:

no—k-1

{sum:= " e(m(i))}{sum:=sum+e(m(ny—k))}

i=1 g
({k}<<sum=sum+e;>>{"°_k})(sum: Y e(mo(i)))
i=1
Update simplification yields:

Yl()k

{sum:= Z e(m(i ))} <<sum=sum+e;>>{”°_k} )(sum ie(no(i)))

i=1

Now, the induction hypothesis for k applies, and the step case of the induction is
closed.
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Base case

The base case k=0 looks like this:

{sum:=)" e(nl(i))}({0}<<sum=sum+e ; >>{”°} Y(sum= Z e(mo(i)))
i=1 i=1
There are no enabled threads left, so the modality with the program can be removed
(rule empty-program), leaving to prove:

{posa)::o||pos<z>::no}{sum::i"le(m(f))}(sum:"z"e<no<i>>>

i=1

After applying the inner update the goal is:

{pos(l)zzo||pos<z>::no}(iie<m<i>>=§le(no<f>>>

The sum equality follows from commutativity of addition, the injectivity of 71; (Ax-
iom/5.5), and the fact that {70 (1),...,m(n9)} ={m(1),..., m(no)}. The latter fol-
lows from the definition of position concretization for position 1 (= Def.[5.6):

posy(l):{ﬂo(l),...,no(no)} N {m(l), . ..,m(no)} .

Taking into account that pos (1) =@ (as pos(1) =0), we obtain the desired set equality:

{ﬂo(l),...,no(no)}:{m(l),...,nl(no)} .

This completes the base case proof.
Use case

By this argument we have established the hypothesis for any k<. Instantiating k
with n, yields:

{sum:Ze(m( ) K {”°}<<sum—sum+e >>{0} )(sum= ie(ﬂo(i)))

i=1 i=1

The sum in the update collapses yielding the Skolemized version of the original con-
jecture (6.1).

The lessons learned from the example are: We have verified the transaction mech-
anism for an arbitrary number of threads. This is important, since it is easy to devise
code that works for 7 but not for n+1threads. The state explosion caused by the poten-
tially different ordering of transactions is efficiently controlled, even without further
knowledge of concrete data. The scheduling-independence of the system does not
require a separate proof before the functional properties can be addressed. Further-
more, it is possible to apply the full power of deductive reasoning about unbounded
data and its implementations (e.g., overflow control for the integer variables [Beckert
and Schlager,(2005]). <
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6.4 Treating Locking Primitives

The lock acquisition method is symbolically executed by applying the rule shown in
Figure[6.2] The structure of this rule is similar to the step rule for handling normal as-
signments. Execution is successful if the path condition is satisfied and the statement
is enabled (remember, P=i implies enabled(i)).As before, the thread performing the
acquire has the id tid=7; (Post(i) +1).

lock

= P=i

01 <lockcount> =0 v o* (D) <lockedby> =tid,
path(i, p, tid) => {0* ")  <lockcount>:=0* " <lockcount> + 1}
{0*( <1ockedby> :=tid}
(o T Yo <tlock> O} )

~path(i, p tid) = (@ 1" o.<lock> O w])o

= ([« U}y <tocr> () 9 w¢

—_———
at position i in p

Figure 6.2. The rule for lock acquisition

Note that the mutual-exclusion semantics of locking does not appear in the rule
directly. Rather, it is hidden in the definition of enabledness (= Def.5.9]/4.13), which
in its turn is part of the axiomatization of position choice P.

A similar rule exists for the <unlock> () method (= Fig.[6.3), which decreases the
lock count and clears the locked-by status when the count reaches zero. For simplicity
we do not clear the <lockedby> flag in the calculus, since it does not prevent further
acquisition of the lock once <1lockcount> has reached zero.

Programmers use locking protocols (besides thread-local data) to enforce atom-
icity of code sections. The easiest way to prove lock-based atomicity with our calculus
is by using the invariant rule. We describe this in detail in Section[7.1.

Recognizing Deadlock

The presence of locking opens a possibility for deadlock. Just as the sequential KeY
calculus maps abrupt termination onto non-termination, we have decided to model
deadlock in the logic as termination. It is still easy to discern a deadlocked state from
normal termination by considering the final program configuration. Besides, the de-
sired postcondition would still hold, even if the program becomes prematurely dis-
abled.
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unlock

— P=i

path(i, p, tid) = {0* ") . <1ockcount>:= 0"  <lockcount> — 1}
([« 1}y cunlocks () T} w)¢

—path(i, p,tid) = (@ "o .<unlock> O 1 W)

= ([a Ui} o <cunlock> ) T wl)¢

———
at position i in p

Figure 6.3. The rule for lock release

6.5 An Invariant Rule

So far, we have used induction for verifying full programs. In the following we present
a complementary rule invariant, which allows tackling each potentially enabled state-
ment separately. Instead of an induction hypothesis, the user has to state (and then
prove) a suitable invariant INV of the system. The rule is:

invariant
I'=UINV, A

INV, P=0=¢
INV, path(1, p, tid(1)), enabled(1) =
(o} DY) {pos(1):=pos(1) ~ 1}{pos(2) :=pos(2) + 1}INV

INV, path(q,p, tid(q)), enabled(q) =
(o349 {pos(q) =pos(q) 1} {pos(g + 1):=pos(q + 1) + NV

(*)

= U(pl)¢, A
We assume that the program p has g positions, and pf(ﬁd(i)) is the sequential instan-
tiation (= Def. of the atomic program at position 7 in p. The id of the thread
executing the instantiation is as usual: tid(i) =m; (Post(i) +1).

The first premiss of the rule states that the system satisfies the invariant in its ini-
tial configuration. The second premiss states that the invariant implies the desired
property, once no thread is longer enabled. What follows are q premisses—one for
each position in the program—stating that the “sequential” execution of the atomic
statement at this position preserves the invariant. For each position we can assume its
enabledness predicate and the corresponding path condition.
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Comparison to loop invariants

At this point it is natural to compare the above invariant rule to the standard loop
invariant rule (= Sect.2.8). First, while a loop only has one degree of freedom (the
execution of the loop body), a concurrent program has one degree of freedom for
each potentially enabled position. Every executed statement brings the system into
a new state, and, thus, has to be shown as invariant-preserving. Second, the concur-
rent invariant formula can—and most probably will—contain control variables, which
correspond to the loop counter. Third, our invariant rule is sound for the diamond
modality even without a special termination argument. The only potential sources of
non-termination are loops, which we assume as atomic, and the sequential calculus
fragment is sound and complete for these. For this reason, the above invariant rule is
also not needed for the completeness of the concurrent calculus.

6.6 Remarks on Calculus Soundness

The soundness of a verification calculus—together with the adequacy of the underly-
ing programming language theory—is an issue of great importance. We have validated
our calculus (and its implementation) by extensive testing. As with the sequential cal-
culus of KeY we have not performed a formal/mechanized soundness proof. The rea-
son for this decision is a resource trade-off, and Chapter[9 is dedicated to explaining
this trade-off in detail.

We did though state in the previous chapters a formal semantics of the logic.
Among other things, the semantics defines the scheduler axioms, which are used by
the calculus. In fact, we did state two versions of semantics: one with explicit thread
ids (= Chap./4) and one with permutations (=> Chap.[5). This approach has helped us
to separate concerns present in developing a general program logic with a determin-
istic scheduler and later one with symmetry reduction. It is of course an interesting
question why the latter logic correctly simulates the former.

The key to answering this question is in the configuration concretization func-
tion (= Def.[5.6) and the scheduler decomposition equality (5.1). The configuration
concretization function explains how every configuration with permutations can be
translated into a configuration with concrete tids. The scheduler decomposition ex-
plains the same for the scheduler function. Both translations are quite simple, and
allow us to fall back on many common definitions in both logics.

Ultimately, of course, it is impossible to relate formal and informal artifacts for-
mally. Thus, there can be no formal proof that any of these semantics are adequate
w.r.t. the Java Language Specification. It is also impracticable to prove that they con-
form with the implementation of any given compiler and JVM. In this light, Chap-
ter[9 explains why testing is necessary for obtaining a reliable reasoning system. The
sequential KeY calculus is automatically tested with the compiler test suite [Jacks] on a
regular basis. For reasons probably related to nondeterminism, such test suites do not
include concurrent programs. This problem does not arise when “running” a program
in a verification system though, as one can usually make assertions over all threads
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compiler and JVM

correctly describes the language implemented by
JLS
adequate

MODL semantics with explicit thread ids (Ch.[4)
simulates correctly
MODL semantics with permutations (Ch.[5)
sound

calculus

implements correctly

prover

Figure 6.4. Reliability of reasoning: artifacts and their relations

and/or interleavings. Thus, a suite of small programs (and reference results) for testing
how verification systems treat concurrency primitives is indeed feasible. Such a test
suite would be of great benefit to the field.!

! We have started building such a benchmark/test suite in the context of the COST Action
IC0701 “Formal Verification of Object-oriented Software” (http://wuw.cost-ic0701.

org).


https://www.cost-ic0701.org
https://www.cost-ic0701.org

7

Extensions and Refinements

7.1 Proving Atomicity with Invariants

A method or code block is atomic if its execution is not affected by and does not
interfere with concurrently-executing threads [Flanagan and Freund, 2004]. There
are two main reasons for wanting to establish atomicity of code sections:

 One reason roots in the limitation of our calculus that all loops must be atomic
(i.e., appear within atomic blocks). In real Java programs, atomicity of code sec-
tions is implemented implicitly with locking or thread-local data encapsulation.
Thus, it is necessary to prove that every such implementation is indeed correct,
and no unsoundness is introduced by putting loops into explicit atomic blocks.

o The second reason is to coarsen the interference granularity of programs and sim-
plify reasoning about their concurrent behavior. It is often useful to separate con-
cerns, i.e., to establish atomicity of code sections first, and then use this fact in
further proof of functional correctness.

So far we have relied on atomicity as a proviso imported into the proof (possibly es-
tablished by some other tool). Here’s how we can prove atomicity in a deductive veri-
fication framework.

To restate the definition more formally, a code block f is atomic if for every pro-
gram execution with final state s there is some equivalent (i.e., also ending in s) exe-
cution, where f8 is executed without interruption. It is actually possible to specify the
atomicity definition of 5 as a formula of our logic:

Vv.({a B @)(x=v)—3s.{o:=s}a <> w)(x=v)) ,

where ¢ is the scheduling seed (cf. scheduler axioms on page[61), and x is the only
location that § modifies (assumed here without loss of generality).

In theory, we could establish atomicity by proving the above formula. There are
two hurdles though. First, we have not stated a calculus for scheduling seeds, so there
is (currently) no way to eliminate the existential quantifier. Second, this method does
not work for proving atomicity of loops, since we cannot reason about the program
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in the antecedent formula, as it is then not syntactically valid. To sidestep these prob-
lems we now show how to check sufficient conditions for atomicity of code sections
guarded by locking.

A sufficient condition for atomicity of f3 is:

> pos(i)<1,
ieC(p)

where C(8) is the set containing at least (a) all program positions of f and (b) all
positions that access the same shared state as . This condition ensures that whenever
some thread could execute a statement potentially interfering with 3,  has either not
yet started or has already finished. The condition can be proven with help of a simple
invariant as illustrated by the following example.

Example 7.1. We want to use the invariant rule to establish atomicity of the following
code section protected by locking®:

0.<lock>(); a=o.sumte; o.sum=a; o.<unlock>();

Since this is the only critical section in the system, the atomicity condition is:

q
N<1, where N=>"pos(i) ,
i=2
which states that the configuration never has more than one thread between its second
and the last position. g is here the number of statements; for the above code, g=4.
Before the atomicity proof can succeed, the above invariant has to be strengthened to

INV=N<1A(N=o.<lockcount>) .

Applying the invariant rule produces 6 premisses:

(1a) This premiss states that the invariant holds in the initial state. We assume that the
initial state satisfies o.<lockcount>=0 and that the initial configuration is:

{n}s <1ock> O; 10} a=6. sumte ; ok, sum=a; {0}y <unlock> O3 o

4
The invariant clearly holds then, since both N = pos(i) and o.<lockcount>
are zero. i=2

(1Ib) We ignore the premiss INV — ¢, since we are only interested in the mainte-
nance of the invariant.

(1) This premiss has to show that the locking statement at position 1 preserves the
invariant. In order for the statement to be enabled at all, the lock must be available
before execution. Then, N =0 before the locking per the second conjunct of the
invariant, which we can assume in the pre-state. After the execution, both N and
o.<lockcount>are equal to 1 (= Fig[Z1/for a more detailed proof of invariance).

' This information may be available in form of modifies/reads clauses.

? To achieve proper mutual exclusion without complicating the proof obligation we assume
in this example that the variable o is static. In general, this variable would have to be local,
and the calculus would check that all threads lock the same object.
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The premiss of the rule for position 1 is the sequent:

INV, path(1, p, tid(1)), enabled(1) =
(p; D) [pos(1) :=pos(1) — 1} {pos(2) :=pos(2) + 1}INV

Here tid(1) =m (X5, pos(i) + 1), but this is irrelevant, since no thread-local data is involved.
Expanding the definitions yields:

(N<1) A (N=o0.<lockcount>),
true, (pos(1)>0) A (o.<lockcount>=0)=—

(0.<Lock>Q) ;){pos(1):=pos(1) — 1}{pos(2) :=pos(2) + 1}((N<1)
A (N=o0.<lockcount>))

After using o.<lockcount> =0 from the enabledness condition for rewriting the invariant in
the antecedent we obtain:

N<1, N=0, pos(1)>0, o.<lockcount>=0=—>

(0.<Lock>Q) ;){pos(1):=pos(1) — 1}{pos(2) :=pos(2) + 1} ((N<1)
A (N=o0.<lockcount>))

Symbolic execution and update application increases both N and o.<lockcount> by one,
while the update to pos is irrelevant:

N<1, N=0, pos(1)>0, o.<lockcount>=0=—>
((1+ N<1) A (1+ N=o.<lockcount> +1))
After rewriting the succedent with both equalities from the antecedent, we have:
0<1, N=0, pos(1)>0, o.<lockcount>=0=(1+0<1) A (1+0=0+1) ,

which clearly holds.

Figure 7.1. Atomicity proof with invariant, premiss for position 1

(2) The statements at position 2 preserves the invariant, since it can neither change
the value of N nor of o.<lockcount>. Only the statements at positions 1 and 4
change these (= Fig.[7.2 for a more detailed proof of invariance).

(3) Position 3: same as premiss (2).

(4) Position 4: analogical to premiss (1).

Thus, the locking works correctly, and the code section is atomic. Once a thread has
entered the section it will run to completion without interference. We can use this fact
to simplify further reasoning. <

The above method allows us to prove atomicity of 8 in
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0.<lock>(); fB; o.<unlock>();

regardless of what f3 is, as long as it does not contain locking operations. This, in turn,
can be established by an easy syntactic check. We can even prove that a loop is atomic,
if we ignore for a moment that a loop without an enclosing atomic block is not a
syntactically valid program.

The premiss of the rule produces the sequent:

INV, path(2, p,tid(2)), enabled(2) —>
(p )Y (pos(2) :=pos(2) — 1}{pos(3) :=pos(3) + 1}INV

Here tid(2) =, (pos(3) + pos(4) + pos(5) + 1), but we will not need this for the further proof.
Expanding other definitions yields:

(N<1) A (N=o0.<lockcount>), true, pos(2)>0=—

(a=o.sum+e; ")) (505(2) :=pos(2) — 1} {pos(3) :=pos(3) + 1} ((N<1)
A (N=o0.<lockcount>))

which simplifies to:

(N<1) A (N=o0.<lockcount>), pos(2)>0=—=
(a=o.sum+e; ")) (505(2) := pos(2) — 1} {pos(3) :=pos(3) + 1} ((N<1)

A (N=o0.<lockcount>))

The symbolic execution of the sequential program in the diamond does not affect the postcon-
dition (as it does not contain a). The update has no effect either, since both pos(2) and pos(3)
are summands in N. Altogether:

(N<1) A (N=o0.<lockcount>), pos(2)>0=>(N<1) A (N=0.<lockcount>) ,

which trivially holds.

Figure 7.2. Atomicity proof with invariant, premiss for position 2

7.2 Treating Condition Variables

Introduction

In the following we present a calculus extension for verifying programs with condition
variables. This is the most complex part of our calculus and its status must still be
considered experimental. We also make a number of simplifications and restrictions.
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The biggest restriction is due to the fact that a correct implementation of a condi-
tion variable in JavA requires a non-atomic loop, which we cannot (yet) treat in our
framework. On the other hand, for conditions that are atomic, we can consider the
whole wait-in-loop idiom as one atomic statement. Many programs in practice sat-
isfy these requirements. Such programs can be verified with this calculus. We actually
make an even stronger restriction, demanding that evaluating the condition does not
change the state.

To simplify matters further, we demand that all threads synchronize on the same
object and that the condition is uniform (i.e., if one thread satisfies it, then all do).
This is the case when the condition is expressed in terms of a shared data structure.

Since we do not allow thread identities in programs, one cannot interrupt ()
a thread. Thus, we do not model the case when a thread exits a condition variable
with an InterruptedException Unsurprisingly, we also do not allow the use of
the wait (long timeout) method, since our framework has no notion of real time.

Additional Means of Expression

We package the common implementation of a condition variable in a special ghost
methodvoid <waitUntil>(boolean b),which we make partoftheObject class.
The actual Java implementation to be verified is replaced by this method during the
unfolding stage of the verification process. The method has as parameter a boolean
condition, which must evaluate to true for a thread to proceed (it is the negated con-
dition of the condition-testing while loop in the original program).

An example of the unfolding is given in Figures[7.3 and 7.4

We need some means to differentiate between threads that are ready to execute
<waitUntil>(b) and threads that have suspended their execution until a notifica-
tion arrives. We employ the ghost field <waiting> present in every object to keep
track of the number of suspended threads. If the program has more than one wait ()
on (potentially) the same object then position-indexed <waiting> fields have to be
used.

An important question is when a position with <waitUntil>(b) is enabled. We
recall that

enabled(i)=3t. (teposy(i) A (path(i, p, t) —> enabled(p(i), t)))

and proceed to extend the predicate enabled(s, t).

Definition 7.2 (Enabledness of <waitUntil>()). We extend Def.|4.13|of statement
enabledness as follows. For the 0.<waitUntil>(b) statement, we define the predi-
cate to be:

enabled(o.<waitUntil>(b), )=
(o(t) .<lockcount>=0 Vv o(t) .<lockedby>=t) ,

where ¢ is the executing thread id. <
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public synchronized Object take ()

try {

while (count ==

wait () ;

throws InterruptedException {

0)

} catch (InterruptedException ie) {
// return without removing

}

Object x = extract(); // decreases count

return x;

Figure 7.3. Element removal method from a blocking concurrent queue (slightly adapted from
java.util.concurrent.ArrayBlockingQueue). If the queue is empty, a consumer thread
blocks until an element is put into the queue

q.<lock>();
waitUntil ( count!=0 );
items=this.items;
x_1=items[takeIndex];
items [takeIndex]=null;
i=takelIndex;
j_4=i+1;
i=j_4;
j_2=1i;
j_3=items.length;
b=j_2==j_3;
if (b) {

j_1=0;
} else {

j_1=1i;
}
takeIndex=j_1;
j_5=count-1;
count=j_5;
q.notifyAll ();
res=x_1;
q.<unlock>();

Figure 7.4. Element removal method after unfolding
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Incidentally, this is the same condition as for lock acquisition. The difference (i.e.,
the fact that some threads may have suspended execution) is hidden in the definition
of pos, (= Def.[5.6), which we will adapt next.

First though, we need to introduce yet another “permutation” function. For each
position i with a <waitUntil>(b), there is a non-rigid function symbol

i N->T .

The function stores the ids of the threads that have suspended execution since the last
notifyAl1().

Definition 7.3 (Configuration concretization for condition variables). We amend
the Definition[5.6 as follows. If the statement 0. <waitUntil> (b) occupies position i
in a program, then

pOSy(i) :({T[i_](l), e ﬂi_l(POSt(i - 1))}\
{7’[,’(1), ey ﬂi(POSt(i))})\

{7’[1‘/(1), ey ﬂil(O(t) . <waiting>)} .

<

The third subterm is new and expresses the fact that suspended threads are unavailable
for scheduling.
The usual axioms still hold, in particular Axiom (5.6):

mi(Post(i) + 1) €pos (i) .
There is now one additional axiom
mir(0(t) . <waiting>+1)epos (i) (71)

constraining the id of a thread next to suspend execution.

Please note that ;- is non-rigid and depends on the state in which it is evaluated.
In particular, its interpretation depends on the value of pos(j), where j is the position
ofnotifyAl1(). One can think of pos(j) as an “invisible parameter” to 7;/. Perform-
inganotifyAll() cleans the slate and gives us a “fresh” m;/, with a possibly different
ordering of threads suspending.

The Rules for Symbolic Execution

We start with a rule for notifyA11(), which is shown in Figure[75. If this statement
is enabled (first premiss), and the path condition is satisfied, the rule wakes up all
suspended threads by setting the <waiting> counter to zero (second premiss). If the
path condition is not satisfied, the statement is a no-op.
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— P=i

path(i, p, tid) = {0* ") . <waiting>:=0}
[a Y30 notifya110 3} w])g

—path(i,p, tid) = ([« {"_l}o.notifyAll(){k+l} w)¢

notifyAll
—(a ¥ o.notitya110 W w)e

—_———
at position i in p

Figure 7.5. The rule for notification

= P=i

—> @« (boolean x = b*"D;)\x=true

path(i,p,tid), @, 0 <1ockcount> >0, o* (i) <lockedby> Eposy(i) Eo

(o 1Yo, <waitntil> () 1} )¢

path(i,p,tid), @, 0% <Jockcount>=0=—
{0"") <lockcount>:=depth(tid)}
{0*("  <1lockedby>:=tid}
(o 1Yo, <waitntil> () 1} o))

path(i,p, tid), -0, 0 <1ockcount> >0, o* (i), <lockedby> Eposy(i) Eo

{0*D <yaiting>:=0* (" <waiting> +1}
{depth(tid) i=o* (i) <lockcount>}
{0*(”‘1) .<lockcount>:=0}

o Yo, <waitintil> () ¥ w)g

path(i,p, tid), ~@, 0" <lockcount>=0—
{0*( <yaiting>:=0*" <waiting> +1}
(o {Yo.<waittntil> () 1 w])e

~path(i,p tid) = (& Yo <waitvntil> (6) T )

waitUntil
—(a "o <waituntil> ) ¥ 0]

S ——
position i in p

Figure 7.6. The rule for <waitUntil>()
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Now we look at the rule for symbolic execution of <waitUntil> () given in Fig-
ure[7.6. The first premiss demands, among other things, that the position in question
is enabled: enabled(i) must hold.

The second premiss captures the condition @ of the condition variable. @ can be
(boolean x =b*{¥);)x=true or its first-order equivalent. Note that the diamond

formula is purely sequential and b* (%) is the sequential instantiation of b for the next
thread to run at position i (i.e., thread with id 7;(Post(i) + 1)). In the case of the
blocking queue, @ is simply count #0.

The third premiss assumes that the condition @ is satisfied and there is one non-
suspended thread (which holds the lock for o). This thread then proceeds past the
<waitUntil>().

The fourth premiss assumes that @ holds, but no thread holds the lock of o. In this
case one of the recently awakened threads contending for the lock (there must be at
least one, otherwise P+ i) is successful and proceeds.

The fifth premiss assumes that the condition @ does not hold, while one thread
holds the lock. In this case there is no thread movement (the configuration does not
change), but the number of suspended threads o.<waiting> increases by one. The
lock is released.

The sixth premiss assumes that the condition @ does not hold, while no thread
currently holds the lock. In this case one of the recently awakened threads returns to
suspended state.

The seventh and final premiss deals with the negative path condition. In this case,
just as with other rules, the thread executes a no-op.

7.3 Proving Absence of Data Races and JMM-Safety

According to the Java Memory Model, updates to shared state performed by one
thread need not become immediately visible to other threads. Even worse, updates
need not become visible to other threads in the order they have been made. Since
this state of affairs puts a high burden on the programmer, the JMM describes a suf-
ficient condition for attaining sequentially consistent program behavior. This condi-
tion, known as the DRF guarantee, can be stated as follows:

If every sequentially consistent execution of a program is free of data races,
these are all the executions allowed for that program. [Huisman and Petri,
2007]

Sequentially consistent executions are exactly executions built by thread interleaving.
It is our goal to check that the program has no other executions, since (a) this is what
programmers usually expect and (b) these are exactly the executions considered by
our verification calculus. To achieve this we need to establish that all interleaving ex-
ecutions are free of data races.

In the following, we extend our calculus with explicit checks for data races. With-
out them, a verified program could still contain “benign” data races or data races in
parts not covered by the specification. In the light of the JMM, these races become a
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problem. For the sake of completeness it should be noted though that the absence of
data races does not entail the correctness of the program.
We use a definition of data race slightly adapted from [Sevc¢ik, 2008].

Definition 7.4 (Data race). An interleaving contains a data race iff it contains two
actions a; and a, such that:

1. a; and a, are performed by two different threads on the same shared location

2. a; is a write

3. there is no synchronization link between the two, i.e., there are no actions b,
and b, between a; and a, (it is allowed that a;=b; and a, =b,) such that either
(a) by is an unlock on object m and b, is a lock on object m or
(b) by is a write to some volatile location v and b, is a read from v <

All currently available functional verifications systems for multi-threaded Java-
like languages are either unsound (they assume a sequentially consistent semantics)
or incomplete (they can only detect synchronization links of type 3(a)). The calculus
extension presented below is able to detect synchronization links of both types.

Consider the code in Figure[7Z7. One thread executes the method one () while
another thread concurrently executes two (). In a sequentially consistent model this
is perfectly safe. Under the JMM, this code can throw a NullPointerException
due to two () seeing a partially constructed object. This happens when the update to
instance by thread one has already propagated to thread two but not yet the update
to name.

One way to avoid this is to declare instance volatile. This would create a syn-
chronization edge between writing instance in one () and reading it in two (). The
edge would ensure that all updates made during the process of initialization by one
thread before it writes instance are visible to the other thread after the other reads
instance. two () will either see instance asnull or pointing to a completely con-
structed object. This pattern is also known as safe one-time publication [Goetz et al,,
2006].

Note 7.5 (Data races vs. functional correctness). Concurrency texts and programmers
are often preoccupied with data races (or “race conditions”). Inside the JMM domain,
this term is used in a strict and “technical” sense; outside it is often a catch-all phrase
for concurrency problem. The latter view of a data race is problematic for two reasons:

o There are correct programs with data races. Representatives of this program class
usually deal with a stream of data values entering from the environment.

« There are incorrect programs without race conditions. Incorrect in the concur-
rency part, that is. Also, any program can be automatically made data-race-free
by enclosing every single access to shared data in a synchronized block.

The above “fix” makes it clear that the problem lies in the granularity of access.
For this reason, we advocate—outside of the JMM domain—the term atomicity fail-
ure as a replacement for “data race”. Furthermore, it should be pointed out that the
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class Foo {

private String name = "Foo";
static Foo instance;

static void one() {
if (instance==null) instance = new Foo(); }

static void two() {
if (instance!=null) System.out.println(instance.name.length());

Java —

Figure 7.7. Code, surprisingly prone to failure under the JMM

correct level of atomicity cannot be established without considering a particular ap-
plication domain. There can be no universal, application-independent atomicity fail-
ure checker. What can be checked meaningfully is whether a program conforms to its
specification, or to a certain convention, or that it accesses shared state in an internally
consistent manner. <

Calculus extension to prove JMM-safety

Definition 7.6 (Heap locations, synchronization edges). Let v be a local reference
variable, C a class name and g an attribute name in a given program. The set of heap
locations Loc is the set of program-compatible pairs:

o (v, a), also written v.a, for every instance field
¢ (C, a), also written C.aq, for every static field.

The set of synchronization edges Edge is the set of program-compatible tuples of the
form:

« (v), also written v, called lock/unlock
o (v,a), also written v.a, called instance volatile read/write
¢ (C,a), also written C.aq, called static volatile read/write. <

Note 7.7 (Quantifying over locations). In order to quantify over locations (and edges)
we have to resort to a trick, since attribute and class names are not first-class citizens
of the underlying KeY logic. We encode heap locations v.a as pairs (v, a'), where v is
the reference to the object and a' is a natural-number hash of the attribute name a.
Thus, quantifying over such locations amounts to quantifying over pairs of objects
and natural numbers. A similar scheme applies to static locations. <



100 7 Extensions and Refinements

To detect data races (or more precisely, absence of synchronization edges), we
define two auxiliary non-rigid function symbols:

lastwrittenby: Loc—T
which keeps track of which thread was the last to update a heap location, and
mem: Loc, T, T, Edge — {dirty, flushed, visible} ,

which tracks the visibility status of a heap location between two threads—the writer
and a reader.

mem(l, t;, t,, e) =dirty means that the last update of the location I performed by
t; need not be visible to t, via synchronization edge e (i.e., t; has updated [ after its
last release on e). The value flushed means the same, but in addition we know that #,
has performed the release part of the edge e and has not changed [ afterwards. t, will
see the newest value of a flushed location after performing a corresponding acquire
on e. Finally, the value visible means that the latest update by ¢ is visible to ¢, via e.

The JMM-safe rules for symbolic execution of assignments are presented in Fig-
ure[7.8] These rules supersede the basic step rule presented in Section[6.3. Their struc-
ture is quite similar to step, but there are separate rules for reading and writing volatile
locations as well as for non-volatile. The presented rules only treat instance fields, but
the rules for static fields are a direct analogon.

The most interesting part is the second premiss of the rule step_read_normal.
This premiss becomes relevant when a thread is trying to access a non-volatile heap
location that has been previously updated by another thread. To discharge this pre-
miss it is then necessary to show that there has been a synchronization edge between
the two threads in-between. The presence of a synchronization edge (resp. its source
and sink) is recorded by the rules step_write_volatile and step_read_volatile. The
rule step_write_normal, on the other hand, excludes the location it updates from the
scope of preceding synchronization edges.

Finally, the following modifications complete the calculus:

o The rules unlock and lock (= Sect.[6.4) are modified to include the updates sim-
ilar to rules step_write_volatile and step_read_volatile.

o As part of the instance initialization process, KeY executes code that assigns de-
fault values to object fields. These assignments must be executed by a special rule
that (a) does not check visibility w.r.t. a previous write to the field (there are none)
and (b) establishes a visibility relation with all subsequent accesses to the field. The
JLS guarantees that default values are always visible without further action by the
programmer.

7.4 Further Extensions and Future Work

Arbitrary systems, pl.n.: Systems about which
nothing general can be said, save “nothing
general can be said”
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step_write_normal
= P=i
path(i, p, tid), lastwrittenby(v.a") # tid =
Je. mem(v.at, lastwrittenby(v.a'), tid, e) = visible
path(i, p, tid) = ((v.a* "D =ge* 1)
{lastwrittenby(v.a*) :=tid}
{for t,e; t#tid; mem(v.a”, tid, t,e):=dirty}
<[‘x {"_l}v.a=se{k+l} w]>¢
—path(i, p, tid) = ([« Tnotdy, g=selintd w¢
= ([« U pamse 3 w))¢

N——
position i in p,
a is non-volatile

step_read_normal
= P=i
path(i, p, tid), lastwrittenby(v.a") # tid =
Je. mem(v.a', lastwrittenby(v.a'), tid, e) = visible
path(i, p, tid) = ([v;(”d)=v.a*('id)])([oc {"_1}v0=v.a{k“} w)e

—path(i, p, tid) = ([« Tnotdyay g Tt we
= ([a Ul oy w)¢
——

position i in p,
a is non-volatile

step_write_volatile
= P=i
path(i, p, tid) = ([v.a* "D =g¢* (1]
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{for I,t; mem(l, tid, ¢, v.at ) =dirty; mem(1, tid, t, v.at ) :=flushed}

<[(X {""l}v.a=se{k+l} w]>¢
—path(i, p, tid) = ([« Lo}y, ggelin w¢

= ([« U pamse 3 w))¢
——
position i in p,
a is volatile

step_read_volatile
= P=i

P ) — (55

{for I, t; mem(l,t, tid,v.an):ﬂushed; mem(l, t, tid,v.a”)::visible}

<[(X {""l}vo=v.a{k+l} w]>¢
—path(i,p, tid) = ([« Tnoky oy gt w)¢

= ([« {n vo=v.a i w))¢
——
position i in p,
a is volatile

Figure 7.8. JMM-faithful rules for read and write access
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Extending to non-atomic loops

The restriction of only dealing with atomic loops is admittedly quite unsatisfying. An
obvious line of research would be towards overcoming this limitation.

The problem with non-atomic loops is that they cause threads to “jump back”
in the program (in an observable way). On the other hand, the configuration con-
cretization (= Def.[5.6), which is at the core of our model, depends on the fact that
the number of threads past a given position never decreases.

One possible way to attack the loop problem is by giving the thread choice func-
tions a parameter: an iteration counter. Another possibility could be to model the
loop in such a way that each iteration is run by a dedicated thread. The latter involves
turning the threads on and off at the right moment as well as “handing over” the
thread-local data.

On the other hand, even programs with non-atomic loops can already be mean-
ingfully verified. A typical such program is a server:

while (true) {
Socket socket = serverSocket.accept();
new Thread(new Handler(socket)) .start();

Java —

Instead of including the listening loop in verification, it is often sufficient to cut off
the loop and verify the correctness of n handler threads running in parallel. The proof
obligation then looks like this:

Vn. (n 20—>({"}handler{0})\7’i.(12iZn—>output(i):f(input(i)))) .

Here handler is the body of the run () method of the Handler class. The postcondi-
tion asserts that the output of each threads is correctly related to its input (which may
be the Socket object or the data read from it).

Abrupt termination

Currently, we treat abrupt termination in concurrent programs half-heartedly. Excep-
tions can only be thrown but not caught. Abrupt method completion upon return is,
in contrast, possible.

We have mostly elided treating method invocations so far. Here’s how it works.
When inlining method implementations KeY marks the method boundaries with so-
called method frame blocks:

method-frame(result->retvar, source=T, this=target) : { body } ,

which also record the variable to store the return value upon return, the source class
of the method body, and the value of this reference.
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Upon encountering a return statement in the body of a method frame, the rule
for handling returns assigns the returned value to retvar and then moves the involved
thread id to the position immediately outside the method frame.

return
= P=1

—path(i,p, tid)=> (@ method-frame(...) :
{B T} return se; {k“} v} 1} w)¢

path(i,p, tid):([retvar—se *(‘id)])([oc method-frame(...)
1B T return se; kFyy k)

= (@ method-frame(...) : {f {nlreturn se;{k}y} {l}w])¢
T

position i in p

Now, it would be desirable to extend the treatment of abrupt termination to full
handling of exceptions. The sequential KeY calculus does it by syntactically rearrang-
ing program parts. In the concurrent case this approach is probably not feasible, as it
would result in different program texts for different threads. A more promising ap-
proach is to equip each thread with a ghost variable “exception status”, which would
contain either the last thrown exception or 1 (for normal execution). We also extend
the definition of the path condition to include exception status. According to this flag
threads will execute or skip certain parts of the program. If the exception status is L,
the program executes normal code and skips any catch clauses. If an exception has
been thrown, the program skips normal code and executes the (appropriate) catch
clause. Executing finally clauses would require jumps similar to those after a return,
but these are harmless, since it is impossible to create a loop.

Modularization

It is known that the efficiency of a verification system is bounded to a great degree
by the compositionality of reasoning it offers. Suggestions for modularizing reason-
ing about concurrent Java programs have been made in [Greenhouse and Scherlis,
2002b; Rodriguez et al.,2005] and others. Research indicates consistently that pro-
grammers use a small number of “serializability techniques”, such as locking protocols
and reference confinement, to ensure correctness of programs.

With sequential programs, methods and their contracts are common units of
composition. Of course, regular contracts are meaningless in concurrent setting due
to potential interference from other threads. On the other hand, the researchers cited
above have developed additional annotations and analyzes to mitigate this problem.
For instance, if the objects mentioned in the pre- and postconditions are referenced
only by the caller thread, then replacing the method call by its contract is sound again.
The same holds if the state relevant for a method call is consistently protected by a lock
and the calling thread holds this lock.
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These techniques, originally developed for model checking and static analysis, can
be put to efficient use in a deductive framework.

We have also experimented with incorporating the rely-guarantee approach into
our verification framework [Schaaf, 2008]. In this setup, the given program is inter-
leaved with an “opaque” environment, which produces updates to shared state that are
described by the rely predicate. The experiments have shown that the rely-guarantee
method is compatible with Dynamic Logic and our symbolic execution calculus. Writ-
ing transitive specifications and managing shared state turned out to be challenging
though.

Verification of lock-free algorithms

An interesting class of algorithms are so-called lock-free data structures [Herlihy,
1993]. Their goal is to increase the level of concurrency—and thus throughput—in
an application by not relying on critical sections and mutual exclusion.

Threads do not need to lock the data structure before reading or updating a lock-
free data structure. A thread wishing to perform an update makes a copy of the data,
modifies the copy, and tries to install the modified version using a special atomic
compare-and-swap (or similar) instruction. This succeeds if no other thread has per-
formed an update in the meantime. Otherwise, installation fails, the overtaken thread
discards its modified copy and repeats the process from the beginning.

Lock-free concurrency is rapidly entering the mainstream, e.g., as part of the stan-
dard Java library. The problem with lock-free algorithms is that they are notoriously
difficult to design and implement correctly. Verifying them would bring a significant
benefit to the field. At this time, only first attempts are being made to produce mech-
anized proofs of real implementations.
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Implementation and Case Studies

8.1 Implementation

We have implemented the basic calculus described in Chapter[6/and the JMM-safety
extension (Section[7.3) in the KeY system. The changes w.r.t. a stock system amount to
about 3200 lines of code in 56 files. The greatest technical difficulty by far was a gener-
alization of the rule application engine. From the very beginning the KeY system was
designed to apply program-manipulating rules only at the beginning of a program.
This limitation had to be lifted in order to support multi-threaded execution.

Specification

Verification problems are specified in Dynamic Logic and input to the prover as so-
called dot-key files [Beckert et al., 2007]. We have extended the syntax of dot-key files
with a keyword \1ocal. The keyword distinguishes thread-local from static variables
in declarations.

\programVariables {
\local int loc; // thread-local
int glob; // static

KeY —

Thread configurations are specified with updates to the non-rigid function pos.
A typical formula thus looks like:

\problem {
{ \for int i; pos(i) := 0 || pos(1):=2 }
\<{
glob = loc;

s
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}\> glob = loc_1(p(1,2))

KeY —

The update (first line) states that pos is always zero except at position one, where two
threads are ready to be scheduled. The extra semicolon in the diamond is concrete
syntax for the stop statement. p(1,2) is concrete syntax for 7;(2), and loc_1 is the
prover’s way to refer to the local variable loc outside the modalities. As promised,
loc_1 has one argument more than loc (i.e., the thread id).

The calculus rules

The step rule is implemented slightly differently from the formulation shown in Sec-
tion[6.3. There is no premiss = P = k. Instead the implementation follows the pattern
of the invariant rule (= Sect.[6.5) and automatically performs a case distinction over
all positions. The rule is shown in Figure[8.1l Per position at least two subgoals are
generated: one for the positive and one for the negative path condition. In the positive
case, a rule from the sequential calculus is matched to the position. The rule describes
the effect on the state resulting from executing this position. This effect may include
generating an update or producing further case distinctions, e.g., to check for a null
reference. An additional subgoal is added for the case that no position is enabled.

Automation

Proof search is automated by the usual strategies of the KeY prover. We have extended
the main strategy with a further parameter controlling when the step rule is to be
applied automatically:

e never
« until some thread becomes disabled
« without limitation.

The second setting is especially useful when performing induction proofs. In all cases,
step is executed with very low priority, i.e., only after no other rules are applicable and
the state description has been simplified as far as possible.

We have also implemented a separate unfolding strategy that pools all rules for
program unfolding (= Sect.[6.2). This strategy is only used for preparing proof obli-
gations and is not active during proof search.

8.2 Full functional correctness of java.lang.StringBuffer

We have applied our system to verify the full functional correctness of a method of the
StringBuffer class in presence of unbounded concurrency. The class java.lang.
StringBuffer is a key class of the standard Java library that represents a mutable
character sequence. Its central method is append (char c), which appends the char-
acter c to the end of the sequence.
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step (impl.)
Vi.(1<i<q—> —enabled(i)) = ¢

path(1,p, tid(1)), enabled(1) —
(27" D {pos(1)=pos(1) - 1}{pos(2) = pos(2) + 1}{[p])¢

—path(1,p, tid(1)), enabled(1) =
{pos(1):=pos(1) —1}{pos(2) :=pos(2) + 1} {p]¢

path(q, p, tjd(q)), enabled(q) =
{(; "D ) {pos(q):=pos(q) ~1}{pos(q +1):=pos(q +1) + 1} ({p)}¢

—path(q,p,tid(q)), enabled(q) —>
{pos(q):=pos(q) — 1}{pos(q +1):=pos(q +1) + 1}({p])¢

= (r)¢

Figure 8.1. Implementation of the step rule

private char valuel[];
private int count;

public synchronized StringBuffer append(char c) {
int newcount = count + 1;
if (newcount > value.length)
expandCapacity(newcount);
value [count++] = c;
return this;

}

private void expandCapacity(int minimumCapacity) {
int newCapacity = (value.length + 1) * 2;
if (newCapacity < 0) {
newCapacity = Integer.MAX_VALUE;
} else if (minimumCapacity > newCapacity) {

newCapacity = minimumCapacity;
}
char newValue [] = new char[newCapacity];
System.arraycopy(value, 0, newValue, 0, count);
value = newValue;
shared = false;

Figure 8.2. StringBuffer source code (excerpt)

107
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We have used the original source code shipped by SUN with the JDK 1.4.2 (shown
in Figure/8.2). The StringBuffer implementation is backed by a char array, which is
initially 16 elements long. Should the array become full, a new, longer array is allocated
and the contents copied. This happens transparently for the user.

We now describe the verification process.

Specification

A functional specification of the append method can be given as:

(strb = new StringBuffer();)Vn.

(n >0—>({”}strb.append(c) ;{0})strb.count:n/\
Vk.(0£k<n—>strb.value[k]:c(ﬂl(k-t-l)))) , (81)

where strb is a static variable of type StringBuffer' and c is a thread-local char
variable.

Plainly speaking: if n threads are concurrently performing an append on a freshly
created shared StringBuffer object, then all threads will eventually run to comple-
tion, and the StringBuffer will contain exactly the characters deposited by the threads.
Furthermore, the characters will fill the backing array in the “natural” order, i.e., the
order induced by the thread scheduling.

After symbolic execution of the StringBuffer creation (in the sequential dia-
mond) and Skolemization, the original conjecture becomes:

Init A n0>0—>({"“}strb.append(c) ;{0}>strb. count=#gA
Vk. (0£k<n0—>strb.value [kl =c(m(k+ 1))) , (8.2)

where ny is a fresh integer constant and Init is a formula capturing the state after
StringBuffer creation. Init is shorthand for:

strb#null A strb.<lockcount>=0 A strb.count=0A
strb.value#null A strb.value.length=16A
strb.value# jchar[]::<get>(jchar[].<nextToCreate>) .

The cryptic last subformula states that the current value array is not aliased to the
next char array to be created. While this precondition is completely obvious, it is
owed to the way KeY deals with instance creation.

! The semantics definition calls for a local variable here, but the calculus is more liberal in this
regard. We use this liberty to write a simpler proof obligation while still achieving the same
effect.
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Unfolding

To proceed with verification, we first “unfold” (= Sect.[6.2) the implementation of
append (). The expandCapacity () method is inlined, and fresh local variables are
introduced to eliminate side effects and make explicit the atomicity granularity of the
code. The result is shown in Figure[8.3, though exceptions and array creation are still
in their folded state for brevity.

The code also shows a call to System. arraycopy (), which cannot be unfolded.
This native method call can be seen as one big parallel assignment, which is sound
under the atomicity proviso proven below. During symbolic execution, the KeY sys-
tem translates a call like arraycopy (src, srcPos, dest , destPos , len) into a quantified
update (= Sect.[2.4.2)

{for I; 0<I<len; dest [srcDest + 11 :=src[srcPos + 11} ,

which is a concise way to express a number of updates at once.

strb.<lock>();

newcount=strb.count+1;

j_1=strb.value.length;

b=newcount>j_1;

if (b) {
j_2=strb.value.length;
j_3=j_2+1;
newCapacity=j_3%2;
b_l=newCapacity_<0;

if (b_1) {

newCapacity=Integer .MAX_VALUE;
} else {

b_2=newcount>newCapacity;

if (b_2) {

newCapacity=newcount;
}
}
b_3=newCapacity<0;
if (b_3) throw new NegativeArraySizeException();
newObject=new char[newCapacityl;
src_l=strb.value;
len_2=strb.count;
System.arraycopy(src_1,0,newObject ,0,len_2);
strb.value=newObject;
}
val_l=strb.value;
j_4=strb.count;
strb.count=j_4+1;
val_1[j_4]=c;
strb.<unlock>();

Figure 8.3. StringBuffer source code after unfolding

Establishing Atomicity

To separate concerns, we now use the invariant rule to establish atomicity of the
method. This greatly simplifies further proof. We follow the pattern from Section[7.1]
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and show that the method can only be executed by one thread at a time (on the same
object). This property can be stated as

q
N<1, with N=3"pos(i) ,

i=2

so the configuration never has more than one thread between its second and the last
but one position. Before the proof can proceed, the above has to be strengthened to

INV=N<1A (N>O<—> strb. <lockcount>>0) .

This invariant clearly holds in the initial state, since both N and <lockcount>are
zero. Statements at positions 2. . . q preserve the invariant, since they cannot increase
the value of N, as only the statement at position 1 can. Finally, the locking statement
at position 1 also preserves the invariant. If the lock is available, then N =0 before the
locking per the second conjunct of the invariant. After the execution, both N and
<lockcount> are equal to 1. If the lock is not available, then the locking statement is
disabled altogether.

Per this invariant, once a thread has entered the method it will run to completion
without interference. Thus, the method is atomic, and we can elide locking, replacing
it by an atomic block. Our conjecture becomes:

({"“}<<strb .append1(c) ;>>{O})

Vk.(0<k<no—> strb.valuelkl=c(m(k+1))) , (8.3)

Init A ng>0— strb.count=npA

where the method append1 (c) (shown here folded) is identical to append (c) save
for the removed locking operations.

Establishing Functional Correctness

So far, we know that the method is correctly synchronized, but is it also function-
ally correct? Using the Java-faithful bounded integer semantics of KeY, we have, of
course, discovered that the specification shown above is not quite right, as it holds
true only for ny<2*'. Trying to insert more characters into a StringBuffer results
in an ArrayIndexOut0fBoundsException. This bound may seem of little practical
importance, but it is an instance of a general problem. Concurrent access to bounded
data structures is likely to result in subtle bugs, even in presence of proper synchro-
nization.

Since there is no way to fix the method, we have to amend the conjecture with a
pre-condition limiting the value of ng. Please note that this is not due to a limitation
of our proof method. We now prove full functional correctness with the following,
quite natural invariant:?

? Tt is also possible to use induction in a manner similar to Example[6.1]
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INV = pos(1) + pos(2) =ny A ng<2>* A pos(2) >0A
strb.count=pos(2)A
Vk.(0<k A k<pos(2) — strb.value[k]l=c(m(k +1)))A
strb#null A strb.value#nulla
strb.value.length>strb.counta

strb.value# jchar[]::<get>(jchar[].<nextToCreate> .
Applying the invariant rule to (8.3) produces three premisses.

Premiss 1: invariant initially valid

In this premiss we need to prove the sequent I'= UINV, A. Here, I' contains just
Init A (ng>0) A (ng<2"), and A is empty. The update U is given by the thread con-
figuration of the original program. The formula

({"”}<<strb .append1(c) ;>>{0}>¢

is shorthand for

{pos(1):=ng ||pos(2):=0} («<strb.appendl(c) ;>)¢ .
The proof obligation is thus:

Init A ng>0 A ng <23 =
{pos(1):=ny || pos(2):=0} (pos(l) +pos(2)=ng A ng<2* A pos(2)>0n
strb. count=pos(2)A
Vk.(0<k A k<pos(2) —> strb.value[k]l=c(m(k+1)))A
strb#null A strb.value#nulla
strb.value.length>strb.counta

strb.value# jchar[]::<get>(jchar[].<nextToCreate>

The quantifier in the succedent has an empty range (due to the update pos(2):=0),
and further basic rewriting renders the sequent proved. The calculus implementation
finds the proof automatically in 67 steps.

Premiss 2: invariant implies postcondition upon termination

In this premiss we need to prove the sequent INV, P=0= ¢, where ¢ is the post-
condition. Since the atomic block is the only position, P=0 is equivalent to pos(1) =0
(per Axiom (5.4)). The proof obligation is thus:

pos(1) + pos(2)=ng A ng<2® A pos(2) >0A
strb.count=pos(2)A
Vk.(0<k A k<pos(2)—>strb.value[kl=c(m(k+1)))A...,
pos(1)=0—

strb.count=npA

Vk.(0<k<ng—> strb.valuelkl=c(m(k+1))) .
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This sequent is easily discharged, since pos(1) + pos(2) =1, together with pos(1)=0
implies pos(2) =ng. The calculus implementation finds the proof automatically in 108
steps.
Premiss 3: invariant preservation
In this premiss we need to prove

INV, path(1,p, tid(1)), enabled(1) =

(27" Y pos(1):=pos(1) - 1}{pos(2):=pos(2) + 1}INV

which is a purely sequential proof obligation. After expanding the definitions, the path
condition simplifies to true and the predicate enabled(1) to pos(1) >0. We also expand
the definition of sequential program instantiation, obtaining the goal

INV, pos(1)>0=([«<strb.appendl(c(m(pos(2) +1))) ;>>)
{pos(1):=pos(1) — 1}{pos(2):=pos(2) + 1}INV .

This goal is the most difficult to prove, since it requires symbolic execution of the
method, reasoning about Java-faithful arithmetics, and quantifier instantiation. The
calculus implementation finds the 2898-step long proof automatically in about 30 sec-
onds.

Further Issues with java.lang.StringBuffer

public synchronized StringBuffer append(StringBuffer sb) {

if (sb == null) {
sb = NULL;
}
int len = sb.length(); // 1
int newcount = count + len;

if (newcount > value.length)
expandCapacity(newcount);

sb.getChars (0, len, value, count); // 2

count = newcount;

return this;

Figure 8.4. Atomicity failure in StringBuffer

An interesting issue is present in a related method of StringBuffer class: the
method append (StringBuffer sb) shown in Figure[8.4.

The method has two critical points: when the length of sb is queried (at 1) and
when the characters are actually copied (at 2). The problem with this code is that
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nothing prevents some other thread to be scheduled between the execution of (1) and
(2). The intruding thread may end up removing characters from sb; the length read at
(1) becomes stale and an attempt to copy no-longer-existing characters at (2) produces
an exception.

Note that this scenario does not constitute a data race. All methods involved (i.e.,
length(),getChars(...),anddelete(...))aresynchronized, thus, all access to
shared data of sb is protected by locks. It’s rather that the lock is released and then re-
acquired, violating the application-specific atomicity policy. One can speculate that
this was done for performance reasons.

The question of course arises how this issue can be detected by verification. It
is clear that the approach taken in verification of the append (char c) method is
not sufficient. Our proof system operates under the closed world assumption, and it
would be necessary to verify the execution of append (StringBuffer sb) in paral-
lel withdelete(. . .) and possibly other methods. If the full program is not available,
it is possible to interleave the execution of the method at hand with an abstract en-
vironment program and find a set of assumptions about this environment that is still
sufficient for the correctness of the method. This kind of rely-guarantee reasoning is
addressed briefly in Section[74]

Conclusion

During the development of the presented proof system we have learned several lessons.

It is possible to execute multi-threaded programs symbolically while taking full
data into account. By employing an explicit scheduler function, our calculus can track
full information about state quite efficiently, but permits abstraction for further im-
provement.

Underspecification is better than non-determinism. The huge range of scheduler
choices can be adequately modeled by a deterministic function that has a fixed but
unknown value. This formalization enables efficient deduction. Relating different runs
of the scheduler can be achieved by incorporating different “don’t-knows”

Describing a domain algebraically is better than giving an enumeration. Descrip-
tions allow us to postpone reasoning until a maximum of information is available. At
this point, some distinctions may have become irrelevant. It might also be possible
to apply powerful simplification laws. If everything else fails, it is still not too late to
produce an explicit enumeration.

Completeness is a desirable property, but a proof system need not be always effi-
cient. It is enough if the system is efficient on benign cases. Modern programming
languages may offer obscure features and means to write very complicated programs,
but programmers’ ability to use them correctly still remains limited. Failing to find a
correctness proof with a sufficiently developed proof system is often a sign that some-
thing is wrong with the program to be verified.

Atomicity failure is a better notion than data race. The absence of data races
is, in general, neither sufficient nor necessary for correct multi-threaded programs.
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Furthermore, the correct level of atomicity for an application is always domain-
dependent. Data race definitions do not take this into account.

Currently, deductive verification can offer advantages for verification problems
that are data-centric or that involve an unbounded number of threads. At the same
time, a convergence of deductive verification, static analysis and model checking can
be noted. Latest incarnations of static verifiers and model checking frameworks suc-
cessfully incorporate symbolic execution techniques and make use of theorem provers
and theory solvers. On the other hand, deductive verifiers are adapting static analysis
techniques and optimizations originally developed for model checking.
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Must Program Verification Systems and Calculi Be
Verified?






Typographic Conventions

The following symbols have a different meaning in the following Part:

T  denotes in the following a so-called domain theory. A theory is a set of formulas
of the underlying logic. These formulas are called axioms.






9

Ensuring Reliability of Reasoning in Program
Verification

Mechanized deductive reasoning involves many ingredients. Among these are a de-
duction calculus, a reasoner implementation, domain-specific theories, and user in-
put. All of these ingredients can contribute to a reasoning failure. The problem is espe-
cially acute when reasoning over large domain theories, such as formal programming
language semantics. We analyze how different methods combat different modes of
failure. In particular, we raise the question of self-application of reasoning-based for-
mal methods as a means to ensure reliability. We summarize the situation in the KeY
project and give recommendations based on our experience in design of verification
systems.

9.1 Introduction

Deduction is reasoning about models or abstractions of—sometimes purely mathe-
matical but mostly real and practical—aspects of the world. To use mechanized deduc-
tion, we have to do two things. First, we have to formalize a given real-world problem,
the domain knowledge, and the domain laws in a suitable logic. On the formal level,
this gives us a query ¢, which is a formula of the logic, and a domain theory T, which
is a set of formulas (axioms). Second, we ask the question whether the theory logi-
cally entails the query (“=1 ¢ 2” or “T'=¢ 7). The answer to this question is usually
computed by means of a calculus implemented in a computer system (“T+ ¢ ?”).

The two-step process outlined above implies that the issue of reliability of reason-
ing is actually twofold. On the one hand, the reasoning must be formally correct, i.e.,
+ must correctly implement . On the other hand, the reasoning must be adequate,
i.e,, T and ¢ as well as = must represent reality in the intended way.

The latter part of the issue—adequacy—is the controversial one. It is possible, and
indeed has been long customary, to consider the theory T as being part of the input
to the reasoning system in the same way as the query ¢, and as opposed to being part
of the system in the same way as = resp. -. In other words, one asks the question
“(T—¢)? instead of “k1 ¢ 2, thus making the adequacy of T a “somebody else’s
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problem”. We argue that drawing the system boundaries in such a way is not a good
solution as it’s simply offloading the problem into the area of usability.

The reasoning community must deal with both correctness and adequacy in or-
der to be successful in practice. As mechanized deduction gains power to tackle more
complex problems, the inadequacy of large domain theories outgrows incorrectness
as the primary source of undesired results. This finding is corroborated by our expe-
rience in building software verification systems, but the problem also persists in other
domains.

There is already a huge body of work on the design of both correct calculi and
adequate theories. Mostly, however, a particular calculus or a particular domain is in-
vestigated. We want to take a more general point of view. We investigate how different
validation methods—both formal and conventional, from verification to testing—are
best used to ensure seamless reliability of the reasoning process, how different meth-
ods relate to each other, and which methods are best suited to uncover which kind of
faults.

Discussions and some reactions we got to talks on this subject show that the ques-
tion of how best to ensure reliability of deduction systems is often fraught with ide-
ological arguments, such as “If you build a program verification system, you have a
moral obligation to formally verify it” With this work, we neither try to reject such
arguments as wrong nor as irrelevant, but intend to put the discussion on more solid
ground. If reasoning technology is to be used in practice, the developers have to be
able to explain to users (and certification agencies) why their reasoning process is re-
liable in its entirety.! And they have to know how and where resources are best spent
to improve the systems.

The structure of this chapter is as follows. In Section[9.2] we clarify some notions
related to the reliability of reasoning. Such a clarification is important as a clear un-
derstanding of the differences between notions such as reliability and correctness or
fault and failure is important for the following discussions (and is often ignored in
the reasoning community). Then, in Section[9.3, we describe the particular problems
of ensuring reliability of large domain theories. In Section[9.4, we define and discuss
different methods and their efficacy for validating reasoning systems, calculi, and the-
ories. In Section 9.5} we report how we ensure reliability of our own verification sys-
tem and discuss the role of competitions. Finally, in Section (9.6, we summarize our
recommendations for ensuring reliability of the reasoning process.

9.2 Clarification of Concepts and Notions

9.2.1 Dependability and Reliability

Dependability of a computing system is the ability to deliver service that can justifi-
ably be trusted [AviZienis et al., 2000]. While dependability of deductive reasoning
systems is important, the exact requirements are substantially different from other

! Very interesting research in this direction is carried out by Denney and Fischer [2005].
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reliability
correctness adequacy
implementation calculus theory E query
not too weak not too strong

Figure 9.1. A reasoning reliability ontology

critical software. What users demand of dependable reasoning systems is in the first
place reliability, i.e., a high probability that the system will perform requests as desired.
Other aspects of dependability, such as confidentiality or safety, are not considered es-
sential for reasoning systems.

9.2.2 Faults and Failures

Dependability research distinguishes between faults, errors, and failures. In the classi-
fication of [Avizienis et al.,|2000], an error is a part of the system state that can cause
a failure. A failure occurs when an error reaches the service interface of a system and
alters the service. A fault is an adjudged or hypothesized cause of an error. A fault is
active when it produces an error and dormant otherwise. Fault activation is the appli-
cation of an input (the activation pattern) to the system that causes a dormant fault to
become active.

As stated in the introduction, reasoning systems can suffer from two kinds of fail-
ures. A correctness failure is when the system reports the wrong answer to the ques-
tion “T E ¢ ?” Correctness failures are caused by faults in the calculus or its implemen-
tation. An adequacy failure is when the system reports the correct answer to “T = ¢ ?°,
but a problem with T, ¢, or = makes this answer unfaithful to the real-world domain.

In the same way as only one aspect of dependability, namely reliability, is re-
ally essential for reasoning systems, only one kind of failure is really critical, namely
unsignaled failure. While a crash of avionics software is unacceptable, a crash of a the-
orem prover may be annoying but is in general not harmful. In this vein, any failure
that is evidently out of the norm is tolerable in a reasoner.
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activation propagation )
fault > error > failure

Figure 9.2. Faults, errors and failures

9.2.3 Ingredients of the Reasoning Process and their Faults

As mentioned above, the following main ingredients play a role in what answer is
produced by a reasoner:

Calculus. The deduction calculus can have faults, in particular if it employs complex
techniques for reducing the search space (e.g., lemma generation) or if the logic
is non-standard (e.g., several different kinds of modalities).

Implementation. The implemented system that executes the calculus can have faults
not only in the way it applies rules but also in functionality on which rule appli-
cation relies, such as Skolemization, term indexing, or unification. There can also
be faults in the proof search procedure that lead to incompleteness.

Domain-specific theories. Large domain-specific theories (examples of which range

from a formal specification of programming language semantics to a domain on-
tology®) are the biggest source of failures in mechanized deductive reasoning.
They may be inadequate (i.e., not reflecting reality) in two ways: being too strong
or too weak. A theory is too strong when it excludes desired models and too weak
when it allows undesired models. Note that one part of a theory can be too strong
while another part is too weak at the same time. We explore these notions in more
depth in Section[9.3.
Sometimes a theory used by a reasoner is “unnecessarily” large. For instance, it
may be possible to axiomatize some mathematical domain by a small set of ax-
ioms, but a reasoner uses a larger though equivalent set of axioms for efficiency
reasons. In this case, the adequacy problem turns mostly into a correctness prob-
lem. Even though the correctness problem still needs to be handled, this is a bet-
ter situation than with many theories that are not derivable from small axiom sets
(e.g., ontologies).

User input. The input to the system is the query posed by the user (e.g., a program
piece to be verified and its specification, or a query submitted to a semantic web
reasoner). A query submitted by the user to the system can be inadequate (i.e., it
does not mean what the user thinks it means) or even vacuous (trivially satisfiable

% A theory of a programming language may formalize its semantics in a number of differ-
ent forms. Examples are: a structural operational semantics, a program logic, a verification
calculus, etc. We have stated three such theories for a concurrent Java-like language in this
thesis: in Chapters[4,[5, and[6|respectively. Obviously, our main interest is directed towards
theories used in verification, but our remarks are not limited to this area. We will also brush
the topic of ontologies, which are among the largest domain theories used for mechanized
reasoning today.
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in an unintended way’). Faults in the input have been neglected in deduction
research for a long time. The study [Beer et al., 2001], however, indicates that up
to 20% of properties submitted to a model checker in practice are vacuous and
that such “trivial validity always points to a real problem in either the design or its
specification or environment”. Furthermore, the study reports adequacy problems
with up to 10% of non-vacuous properties.

Note that the distinction of ingredients is conceptual. Concrete systems may incor-
porate these ingredients in different guises. The same domain theory can be encoded
in form of logical formulas in one system (7 + ¢), be part of the basic calculus in an-
other (-~ ¢), or be hard-coded in the implementation of a decision procedure in a
third. This polymorphism does not invalidate our remarks.

9.3 The Problem of Theory Adequacy

9.3.1 The Lack of Formal Semantics

If the domain that a theory formalizes is itself formally defined, it is possible to for-
mally prove its adequacy—even if that may be a difficult and tedious task.

For mathematical domains, a formal reference definition is usually available, while
that is hardly possible for theories that formalize an aspect of the real world (such as
ontologies).

Domains from computer science applications usually lie in between. Most of these
domains involve formal languages, but in practice a formal definition is often not read-
ily available. For example, hardly any programming language in wide use today has
an official formal semantics. For instance, there is no official formal semantics of the
Java programming language. Sun Microsystems, the holder of the Java trademark, de-
cides what constitutes a valid Java implementation within the framework of the Java
Community Process. It is required that every such implementation adheres to the Java
Language Specification, which is a precise but informal document. Conformance is,
in particular, checked by a compatibility test suite.

Many research groups have come up with their own formal semantics of (frag-
ments of) the Java language.? Ultimately, there is no formal way to judge whether any
of these semantics is adequate, i.e., reflects the official informal specification correctly.
Verifying one theory of Java against another is helpful, but some doubt will always re-
main about whether both theories are correct w.r.t. the official language specification
and its implementations (compilers, virtual machines), which is what counts in prac-
tice.

Consequently, other methods such as testing the theory using a large number
of programs (e.g., a compiler test suite like [Jacks]) can lead to the same—or even

? For instance, the temporal assertion that every request is followed by a response is vacuously
true in a model with no requests.

4/ Beckert et al. [2007]; Jacobs and Poll [2001c]; Poetzsch-Heffter and Miiller [1999b]; von Ohe-
imb [2001a]; Zee et al. [2008]; Marché et al. [2004], and many others.



124 9 Ensuring Reliability of Reasoning in Program Verification

a higher—degree of reliability w.r.t. the informal language specification as a formal
proof.

9.3.2 The Problem of Too Strong Theory

Theories may be too strong and thus exclude desired models. From the logical per-
spective, the interesting case of a too strong theory is an inconsistent theory. While it
is perfectly sound to derive any formula from an inconsistent theory, this is clearly not
what the users of deduction systems want. Deduction must not leave this problem out
of consideration. There is a number of reasons for inconsistencies in domain theories:

o Onereason is misunderstandings and clerical mistakes. When detected, these can
be easily fixed.

Another reason is a problem in the domain itself. For example, an important
part of the Java Language Specification is the Java Memory Model. Lately a semi-
formal definition of the model was adopted by Sun [Manson et al., 2005b]. Re-
cent research [Aspinall and Sev¢ik, 2007; Huisman and Petri, 2007], however,
has shown that the proposed model is inconsistent, and there is also no obvious
“fix” to the problem. Domain experts agree though that there is a fragment of the
model that is safe for programming and reasoning.

Yet another reason lies in the size of the theory and its authoring process. In the
domain of semantic web, very large ontologies are routinely produced by combin-
ing several smaller ones. Rigorously ensuring the consistency of the result is—in
this domain—often impractical. It is to be expected that large ontologies will con-
tain inconsistencies [Huang et al., 2005].

It remains an open research question, how to build deduction systems so that in-
consistencies are detected, and if not—the probability remains small that a wrong
(inadequate) answer is derived.

9.3.3 The Problem of Too Weak Theory

Theories may be too weak and thus admit models undesirable in practice. We distin-
guish two basic sources of theory weakness: missing features and the chosen level of
abstraction.

It is likely that a large domain-specific theory does not cover some features of the
domain. This incompleteness manifests itself as failure to verify correct programs or
inability to answer queries over particular vocabulary. When solving this deficiency
by incorporating an additional ontology or extending the language semantics it is of-
ten impossible or impractical to guarantee consistency of the result. Still, practitioners
might prefer a verification system that is 99% correct but covers all of the program-
ming language to a 100% correct system that covers only 75% of the target language.

Furthermore, theories only capture reality up to a certain level of abstraction.
Practitioners know that verified software may still fail. This can happen because the
software is part of a larger system that fails (compiler, operating system, hardware);
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or because the verification assurance does not cover an important aspect, such as se-
curity, quality of service, or, in particular, fault tolerance of the whole system. Thus,
formally verified correctness never leads to absolute reliability. Nothing is 100% reli-
able in the sense that it does never fail.

9.4 Different Ways to Reliability of Reasoning

9.4.1 Conventional Ways to Reliable Software

Practitioners know that formal methods are not the only way to reach a high level
of dependability and, in particular, reliability. High dependability of software used in
practice can be achieved with testing and experience from long-term use as well.
The aviation industry, which has a high level of reliability in all its systems, is a
good example. A very important measure used to achieve this reliability is the careful
investigation and analysis of accidents (failures) and immediate feedback to design
and operation. The use of well-matured technology also contributes to keeping the
reliability level [Sakugawa et al.,2005]. Aviation industry also has universal regula-
tions for the use of software in airborne systems. One part of these regulations is the
guideline DO-178B [RT'CA, 1992]. It lists objectives (for different levels of criticality)
that a piece of software must satisfy in order to be certified for airborne use. With the
increasing level of criticality, the total number of objectives increases, as well as the
number of objectives that have to be satisfied “with independence’, i.e., the validation
activity has to be performed by a person other than the original developer. The main
activity used to validate avionics software is rigorous testing. Reasoning-based formal
methods are permitted but neither required nor sufficient by themselves. In general,
DO-178B states that “formal methods are complementary to testing”
Complementarity is good for yet another reason. While dependability is about
justifiable trust, trust is still a social process. Thus, introducing a technology (such as
reasoning-based methods) cannot be done abruptly but requires a step-wise process.
The new technology has to be evaluated in practice, even if it has been formally proven
correct. When it is introduced, it has to be compared to and supported by well-known
and trusted techniques (such as testing). This is the only way to ensure adequacy.

9.4.2 Measures Against Faults in Reasoning Systems

The reasoning community often favors a self-application of reasoning-based formal
methods to ensure reliability of its tools, but conventional methods like testing and
using mature technology are also useful. In reality, both kinds of methods are com-
plementary and a balanced mix is necessary to achieve reliable systems.

Below, we survey different means to validate the ingredients of the reasoning pro-
cess.
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Measures against faults in the calculus

Formally verifying the (core) calculus, i.e., proving that = or at least -ck, is an
efficient method for removing faults. This assumes that the logic used for deduction
has a well-established formal semantics (i.e., a definition of =), against which verifi-
cation can be done. This is often the case. If the core calculus is relatively small, its
correctness proof can even be performed with paper and pencil (e.g., [Beckert and
Platzer, 2006b]).

Of course, a calculus can also be tested. The answers it gives for test queries are
compared with answers known to be correct and/or adequate. Usually, this is done as
part of testing the calculus implementation (see below).

Measures against faults in the implementation

Verifying the reasoner implementation (with a program verification tool) is a possibil-
ity even though rarely practical due to the large size of the reasoner. The size problem
can be alleviated by employing and verifying a proof checker—a small program that
only has to check proofs and not find them. It is a common misconception, though,
that a verified reasoner or proof checker makes reasoning completely reliable. These
methods can avoid resp. detect faults of the implementations, but they do not mitigate
adequacy problems in the domain theories.

Testing and service history also can assert reliability of the implementation. For
example, people do believe in the correctness of Isabelle [Nipkow et al., 2002; Isabelle],
even though the implementation is not verified (neither is the implementation of ML
verified, etc.). That shows that at some point, even formal methods people stop ver-
ifying things that are well tested. Testing, here, means submitting queries ¢ to the
implementation and comparing the answer to the definition of - ¢ (correctness of the
implementation w.r.t. the calculus), to the definition of = ¢ (correctness of the calcu-
lus), and/or the expected answer (adequacy).

A good source of test cases for provers for non-program logics are the various
benchmark suites, such as:

o the TPTP library [Sutcliffe and Suttner, 1998] (for first-order logic)

o the SATLIB library [Hoos and Stiitzle, 2000; Hoos and Stiitzle] and the problems
used in the International SAT Competition [Le Berre and Simon] (for proposi-
tional logic)

o the ILTP library [Raths et al., 2007; Raths et al.] (for intuitionistic logic)

o the QBFLIB library [Giunchiglia et al.] (for quantified boolean formulas)

o the SMT-LIB library [Ranise and Tinelli, 2006; Barrett et al.] (for satisfiability-
modulo-theories problems).

The suites can be used for evaluating both the performance and the reliability of sys-
tems.

Measures against faults in the domain theories

It is possible to verify a domain theory T formally against another formalization T
of the same domain. In program verification, for example, academia has put a lot of
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effort into “soundness proofs” of verification calculi.>*® Such “soundness proofs” are in
reality adequacy checks for theories of programming languages. They are well-suited
for finding most kinds of faults, however complex or obscure. In domains, for which
an official formal semantics T" is available, it is even possible to guarantee adequacy.

In other domains (and these are more common), a proof that T and T’ are equiv-
alent or that 7T is a refinement of T” is still useful, but it may fail to uncover adequacy
faults. The chances that this happens increase if both formalizations T and T" as well
as the equivalence proof are made by the same person. This renders the fault detection
process less effective due to the increased probability that the author has misunder-
stood the domain, and that both theories are inadequate in the same way. Therefore,
if theories are verified, they should be cross-verified against other people’s formaliza-
tions of the domain laws. With cross-verification, the probability of uncovering faults
is much higher.’

An underestimated way to ensure reliability of theories is testing. Testing means
evaluating the relation T+ ¢ for a number of queries ¢ and comparing the results
with known adequate answers. Testing is good for uncovering misunderstandings.® It
is much easier to detect faults with a test suite written by other people than to cross-
verify a theory. For many domains, test suites are readily available as their creation
does not require formalizing the domain laws. Note, however, that it is important to
use both derivable and non-derivable queries for testing.

Testing may, of course, fail to find faults with complex or rarely occurring activa-
tion patterns. Nonetheless, tests build trust among the users of the system. Further-
more, tests validate a system on all levels simultaneously. It is also easy to redo tests
automatically when any part of the system is modified. Re-doing a verification proof
may be difficult and require interaction and/or a proof-reuse mechanism.

> “A Hoare logic that is unsound would be useless since its very purpose is to verify correct-
ness of programs. Thus after giving a Hoare logic the proof of its soundness is obligatory, in
particular when—Ilike in our case—the rules are rather involved and thus their correctness
is by far not obvious.” [von Oheimb,2001b]

% “The proof rules are specified in KIV and their correctness with respect to the [own] seman-
tics has been proved. [...] All 57 rules have been proved correct. The specification and veri-
fication effort required several months of work. [...] As can be imagined several errors were
found during verification. Most of them are errors only for type incorrect programs.” [Sten-
zel,12005]

7 The UK Defence Standard 00-55 “Requirements for Safety Related Software in Defence
Equipment” [UK Ministry of Defence, 1997] demands that “[...] there should be at least
a peer review of the proof obligations and formal arguments [by a member of the team|]
other than the author [...]".

¥ “However, both semantics and calculus could be wrong, It is possible to validate the seman-
tics by ‘running’ test programs in KIV (automatically applying the proof rules) and com-
paring the output with a run of a Java compiler and JVM (currently 150 examples), and this
certainly increases confidence in the semantics [...]” [Stenzel,2005] (the author goes on to
argue that both testing and verification of the calculus are needed).
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Measures against faults in the user input

User input is, by its very nature, not part of the reasoning system. The formulation of
queries is, however, part of the reasoning process and, thus, the adequacy of queries
is relevant for the process’s reliability.

A fault in user input is present whenever the query ¢ does not mean what the user
thinks it means. A correct answer to the question “T ¢ ?” will in this case not have
the expected impact in the real world.

User input cannot easily be verified or tested. But, apart from many systematic
approaches for elicitation of requirements or construction of ontologies (which we
will not cover here), there is a number of ways in which deduction technology can
assist the user to formulate meaningful queries.

First, the builders of deduction systems can work on formalisms that do not make
it unnecessarily hard for the users to express their exact intentions. Second, the deduc-
tion systems can produce a proof or a trace to justify the deduction result. Inspection
of the proof is a very effective—if costly—measure to combat misunderstandings in
the meaning of the query.

Third, a whole new class of sanity checks based on mutation has been developed
lately for automated program verification [Kupferman, 2006]. After a successful ver-
ification attempt, the query (the program or the specification) is mutated and the de-
duction is repeated. If verification succeeds again, then the mutated part of the query
probably plays no role in determining the outcome. This indicates a problem with the

query.

9.4.3 Scalability of Fault Removal Approaches

When choosing a validation method, one needs to consider its scalability. There are
two things that can make it hard to find a particular fault in a system: the size and
complexity of the system and the “complexity” of the fault. The latter is a function of
how complex and how rare an input is that activates the fault and causes a failure.
Validation methods must be sufficiently scalable in both dimensions.

An additional factor to consider is how easy it is to re-validate a system, i.e., to
reuse and adapt a correctness proof or to re-run tests, when a part of the reasoning
system is changed or used in a different configuration (as both happens frequently in
practice).

The scalability of theory validation depends on the domain. For example, when
validating a theory of a programming language, no scaling-up in size is required, since
the size of the theory is fixed or at least clearly bounded. The validation method has
to be able to handle a theory of that particular size. Scalability becomes relevant again
when theories of standard libraries are added to the system. Java programs, for in-
stance, rely heavily on libraries shipped with the language. The good news is that li-
braries are independent from each other and from the core language. Adding a theory
for a library does not create faults in other theories. This emphasizes the importance
of modularization when dealing with large-scale problems.
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A measure for the complexity of faults (i.e., the second dimension of scalability) in
a programming language theory is the number of language features that are involved.
For example, the rule for handling while-loops in Java has to consider the possibility
that the loop body throws an exception and, thus, terminates abruptly. If the loop rule
is faulty and does not cover the case of abrupt termination, then this problem can only
be found with a test case involving both features: while-loops and exception throwing.

Finding very complex faults is difficult to do by testing. This problem is mitigated,
however, by the fact that programming languages are designed for humans by hu-
mans. Language designers try to make individual features as independent as possible,
since otherwise the language is hard to understand and use for programmers. Alto-
gether, the question of scaling along the fault complexity dimension is an argument
in favor of verifying the verification system—but not a very strong one.

The situation is more problematic with ontologies. Modern ontologies dwarf other
theories in size, and the domain they model is, in most cases, part of the real world
and not human-designed. Faults can thus span a large number of features (concepts).
Even if a modularization of the domain is possible, it is often not readily available.
Moreover, ontologies tend to change and evolve quickly.

9.4.4 Consequences of Residual Faults

Since attaining a fault-free system is very difficult, we must consider the consequences
of residual faults. The most problematic fault class are catastrophic faults, i.e., faults
that lead to the system performing arbitrary deductions. The biggest potential for
catastrophic fault lies, in our experience, in the core calculus of the system (e.g., a
faulty induction or Skolemization rule). Therefore, the core calculus has to be vali-
dated to the highest reliability levels.

In theories of programming languages, on the other hand, most of the (numerous)
axioms correspond to particular features of the language. Therefore, the effects of a
fault in most cases remain localized and do notlead to catastrophe. That is, verification
proofs for (parts of) programs not containing the particular feature are not affected,
which may be the very reason why a fault remains undetected.

The sheer size and the dynamic nature of ontologies may prevent effective fault
removal. Thus, development of techniques for non-trivial reasoning with faulty, and
in particular inconsistent, ontologies is still a hot research topic [Huang et al., 2005].
Possible solutions include paraconsistent logics, multi-valued logics, reasoning with
consistent subsets of a theory, etc.

9.5 Finding Faults in Practice

9.5.1 The Situation in the KeY Project

The KeY tool is a mature and established verification system for Java with high cov-
erage of the language. The KeY team has stated only one theory of Java (i.e., the KeY
calculus). We have refrained from stating two theories and proving their equivalence.
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Resources saved on this were instead spent on further improvement of the system.
At the same time, the KeY project performs ongoing cross-verification against other
people’s Java formalizations to ensure adequacy.

One such effort compares the KeY calculus with Bali [von Oheimb, 2001b], which
is a Java Hoare Logic formalized in Isabelle/HOL. The published result [Trentelman,
2005] describes in detail cross-verification of the rules for local variable assignment,
field assignment and array assignments. These rules are of particular importance to
every Java theory. The KeY rules were translated manually into Bali rules, and these
were then proven sound with respect to the rules of the standard Bali calculus. This is
how the missing check for an ArrayStoreExceptionin the array assignment rules
was detected (= Sect.[10.8.6).

A different approach has been taken by Ahrendt et al. [2005b]. It takes as a ref-
erence another Java semantics [Farzan et al.,[2004], which is formalized in Rewriting
Logic and mechanized in the input language of the Maude system. This semantics is
an executable specification, which together with Maude constitutes a Java interpreter.
The nature of this semantics made it particularly suitable for verifying program trans-
formation rules of KeY. These are rules that decompose complex expressions, take care
of the evaluation order, etc. (about 45% of the KeY calculus). For the cross-verification,
the Maude semantics was “lifted” in order to cope with schematic programs like the
ones appearing in KeY. The rewriting theory was further extended with means to gen-
erate valid initial states for the involved program fragments, and to check the final
states for equivalence. The result is used in frequent completely automated validation
runs, which is beneficial, since the KeY calculus is constantly extended with new fea-
tures.

Furthermore, the KeY calculus is regularly tested against the compiler test suite
Jacks [Jacks]. The suite is a collection of intricate programs covering many difficult
features of the Java language. These programs are symbolically executed with the KeY
calculus and the output is compared to the reference provided by the suite. This ap-
proach has also been taken by others [Stenzel, 2005].

All of the above methods have found faults in the KeY system (in the calculus, in
the Java theory, and in the implementation), while none of the methods alone would
have been sufficient to uncover them all. A balanced mix of validation methods is
necessary to attain high reliability at reasonable costs. In our experience, an important
role is also played by good software engineering practices, such as extensive unit tests,
bug tracking, peer review of code, etc.

9.5.2 Reliability and Deduction System Competitions

Most competitions for reasoning systems today assume that reliability is something
that systems must have by definition. Wrong answers are often considered an em-
barrassment for both the system implementors and the competition. Both the rules
of CASC [Sutcliffe, b] and the SAT Competition [Le Berre and Simonl], for instance,
state that a system exhibiting unsoundness will be disqualified. Competitions, how-
ever, should acknowledge that reliability is a criterion for comparing systems. The
SMT-COMP [Stump] competition already does this.



9.6 Recommendations 131

The history of CASC shows that many participating systems have soundness
faults, which is not surprising as developers always submit the latest versions of their
systems. Since 1996, when the first CASC was held, 27 systems were disqualified in
12 installments of CASC [Sutcliffe,la] (an average of two per year) because they failed
a soundness test by giving a wrong answer to at least one problem from the TPTP
library. More faults probably existed in the participating systems but remained unde-
tected.

Of course, a systems exhibiting unsoundness should not win a competition. But
instead of merely disqualifying a faulty system, one should investigate the reasons and
publish the detailed findings of the investigation so that others may learn how to avoid
such faults.

9.6 Recommendations

As a conclusion, we summarize our recommendations for ensuring reliability of rea-
soning systems, in particular if they use large domain-specific theories.

There is a trade-off between reliability and other qualities.

Reliability is a critical property for reasoning systems. But there are other important
qualities as well: functionality, dependability (of which reliability is one aspect), us-
ability, performance, and cost.” Moreover, reliability is a measure of probabilities: no
system is 100% reliable. Consequently, reliability is not an absolute, but there is a trade-
off between reliability, i.e., probability that the right answer is given, and other prop-
erties of the reasoning system. All properties should be considered when the quality
of a system is evaluated.

When developers think about how they should improve their system, they should
analyze which kinds and what frequency of failures would be acceptable to the users.

Reliability is a gesamtkunstwerk.'’

All ingredients of the reasoning process contribute to its reliability. Validation of all
ingredients should be taken into consideration. One cannot claim reliability just by
proving the calculus to be sound if the implementation has not been thoroughly
tested.

Also, deduction systems should be built such that they support the search for in-
adequacies in domain theories or queries.

® “Of course, a theorem prover should be sound. [...] However, also efficiency is an important
consideration in the design. If a tool is sound, but too slow, it is not useful for verifications
of larger systems. Also, as explained above, even though PVS contains soundness bugs, it
is still a great help in specification and verification, since most of the time it works ‘cor-
rectly” [Huisman, 2001a]

' The term gesamtkunstwerk, which might be translated from German as “synthesis of the
arts’, is commonly used to describe any integration of multiple art forms.
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Both formal and conventional validation methods have their strengths and their
weaknesses.

Neither conventional nor formal methods are inherently superior. The reasoning
community has to be at the forefront of users of formal methods, but practitioners
using conventional methods also have a point. We should use a balanced mixture of
both approaches.

Use cross-verification.

If theories are verified, they should be cross-verified against other people’s formaliza-
tions of the domain laws. With cross-verification, the probability of uncovering errors
is much higher.

Do not draw the system boundaries artificially tight.

One should not turn adequacy of the domain theory or the query into a non-issue
or somebody else’s problem by defining the theory or query to be outside the system’s
boundaries. That does not solve the problem of making the reasoning process reliable.

Investigate and publish the reasons for failures.

The reasons for failures should be investigated, and immediate feedback to design and
operation should be given. The investigation should go beyond finding the fault that
caused the failure. “Why was the error made in the first place?”, “how could it have
been avoided?” and, “why wasn't it detected before?” are also important questions.
The findings of the investigation should be published so that others may learn how to
avoid errors of the same kind.

Also, being open about failures and the faults causing them (as opposed to hiding
them as an embarrassment), builds trust among the users of the system.

Reliability should be a criterion in competitions.

Competitions for reasoning systems should treat reliability as a (high-impact) cri-
terion for system quality. They may bar unsound systems from winning but should
report their performance results together with an analysis of the soundness problem
and its impact.

We are thankful to the anonymous Reviewer 1 for very helpful comments on an earlier ver-
sion of this text.
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Applying Proof Reuse in the Verification Cycle

Experience shows that the prevalent use case of program verification systems is not a
single prover run. Most of the time verification engineers iterate verification attempts.
This happens for a plethora of reasons, such as a fixed bug in the code, an extension
to the program, a revised specification, a new try after a failed proof attempt, or even
a change in the proof system itself.

In such a case, if the change is small, it is often better to adapt and reuse the existing
partial proof(s) than to verify the program again from first principles. A particular
advantage of proof reuse for interactive verification systems is that it can reduce the
total number of user interactions.

Here we present such a technique for proof reuse. We have developed this tech-
nique earlier to help recycle proofs after fixing bugs (this is indeed the scenario that we
will use to explain the technique). New in this thesis is how our method can improve
the user experience for a whole range of everyday verification scenarios.

After discussing the features of the method, we will introduce a small running
example, cover the theoretical and practical details of proof reuse, examine other so-
lutions to the problem, and finally survey a wide range of proof reuse applications in
deductive verification of Java software.

10.1 Introduction

Features of Our Reuse Method

The main features of our reuse method are:

(1) The units of reuse are single rule applications. That is, proofs are reused incre-
mentally, one proof step at a time'. This allows us to keep our method flexible, avoiding
the need to build knowledge about the target programming language or the particular
calculus rules into the reuse mechanism. Another consequence of this feature is the
guaranteed soundness of proofs, since the usual rule application mechanism of the
prover is used for proof construction.

! Alternative approaches are discussed under “related work” (= Sect.[10.7).
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(2) Proof steps can be adapted and reused even if the situation in the new proof is
merely similar but not identical to the template.

(3) In case reuse has to stop because a changed part in the new program is reached
that requires genuinely new proof steps, reuse can be resumed later on when an un-
affected part is reached. The system detects when this is the case.

A Review of Basic Notions and Definitions

At this point, we review some important calculus-related notions from Section [2.5.
As usual, we assume that rules are represented by rule schemata. Rule instances are
derived from rule schemata by instantiating schema variables. In the following, we
identify rules and their schema representations.

A proof for a goal (a sequent) S is a tree with S at the root. A proof is constructed
by matching an open goal with the conclusion of a rule and extending the tree at this
point with child nodes (sub-goals) corresponding to the premisses of the rule. Rules
without premisses (axioms) finalize this process at a given goal. A rule application,
thus, consists of a rule instance and a node in the proof tree that is a logical conse-
quence of its child nodes via this instance.

Most rules have a focus, i.e., a single formula, term, or program part in the con-
clusion of the rule that is modified or deleted by applying the rule. The focus of the if
rule in Section for example, is the if-statement. An example for a rule that does
not have a focus is the cut rule; it can be applied anywhere.

A Running Example

We now motivate our approach using a simple example. While utterly contrived, this
example is well-suited to give insight into the setting and the mechanics of proof reuse.
Consider the following program:

int x;
int res;
res=x/x;

Java —

Its intended behavior and specification is that it should always terminate with res
set to 1. The program, however, contains a bug and cannot be proven correct, since
an arithmetic exception can be thrown on division by zero.? Figure10.1 (a) shows the
beginning of the failed correctness proof. It has one open branch (the “division by
zero” branch) where an exception is thrown. The other branch (the “normal execu-
tion” branch) can be closed. We will use this proof as a template for reuse and refer to
it as “old proof™.
We now amend the program and obtain the following “new” version:

% In fact, Java requires initializing the program variable x. However, here we treat x as if it
were an input parameter with unknown value. The variable declarations play the role of the
leading program part that is not affected by the bug fix.
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int x;

int res;

if (x==0) {
res=1;

} else {
res=x/x;

}

Java —

This new program is correct w.r.t. the specification. It always terminates with res set
to 1. Figure [10.1/ (b) shows the beginning of the proof for this, which consists of a
completely new branch for the case that x is zero (shaded) and a “non-zero” subproof
that handles the division statement.

(int x;... (int x;...
(int res;... (int res;...
(if (x==0) ...
y l \
x#0— x=0—
(res=x/x;.. (res=x/x3... (res=1;...
= .. x#0— x#£0—
x =0 — (AExc. x#0— (res=1;... x =0 — (AExc... x #0— (res=1;...

Figure 10.1. Schematic proofs (a) before and (b) after program correction. The leftmost branch
of the old proof cannot be closed, since the program contains a bug. AExc is shorthand for
throw new ArithmeticException();

Comparing the old and the new proof we can see that there are parts that are in
some way common to both. We can also see that in the new proof these recyclable
parts are interspersed with proof steps that are genuinely new. Furthermore, the for-
mulas in the new proof are not always identical to their counterparts: some have ad-
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ditional premisses, but the similarity is discernible. This is a common situation where
proof reuse is called for. We will return to this example and show how reuse works for
it in Section[10.6]

10.2 The Main Reuse Algorithm

Basic ideas

As said in the introduction, we start with two versions of a program: an old one, and
a corrected new one. We also have two proofs in the system: the old, template proof
dealing with the old program—it may or may not be a complete proof—and an in-
complete new proof dealing with the new program. At the beginning, the new proof
is a tree of a single node. This initial proof goal is constructed from the new program
and the specification, which we assume to have remained unchanged.

For each application of the reuse facility—as for any interactive proof step—there
are choices to be made:

(a) the rule (schema) to be applied
(b) the focus of application, i.e., a suitable goal/position
(c) instantiations for schema variables.

On the one hand, our goal is to make in the new proof—if possible—the same choices
as in the template proof. On the other hand, we expect the two to have parts, which
evolve in a similar but not identical manner. This requires us to generalize and extract
the essence of the above choices in the old proof.

For finding the rules that are candidates for choice (a), such a generalization is
readily available. The rule schemata are natural generalizations of particular rule ap-
plications. We then try to adhere to the overall succession of rule applications in the
template proof. But, since proofs are not linear, at each point in time there can still be
several candidate rules that compete for being used first.

Choice (b), i.e., the point where a given candidate rule is to be applied, is more
difficult as it is hard to capture the essence of a formula or sequent. To solve this prob-
lem, we define a similarity measure on formulas (= Sect.10.3). Fortunately, there is
usually only a moderate number of possibilities, because program verification calculi
are to a large degree “locally deterministic”. That is, given a proof to be extended, most
rule schemata only have a small number of potential application foci.

These combinations of candidate rules and their potential focus points—which
we call reuse pairs in the following—are ordered according to the similarity between
the potential focus in the new proof and the actual focus in the template proof. Thus,
the similarity measure both implements the generalization for choice (b) and is used
to prioritize the rule candidates left from choice (a).

Finally, to make choice (c), schema variable instantiations are computed by match-
ing the rule schema against the chosen focus of application. Schema variables that do
not get instantiated that way, e.g., quantifier instantiations, are simply copied verbatim
from the old proof.
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The main algorithm

The main reuse algorithm is shown in Figure[10.2. It maintains an unsorted list C
of distinguished rule applications in the template proof, which are the reuse candi-
dates. While reuse progresses and the new proof grows, those old rule applications
that are considered currently available for reuse are listed in C. In the beginning, C
is initialized with the list of initial candidates Cy, which is computed by the function
initialCandidateList from the differences in programs.

input oldProof , oldProgram, newProgram, specification;

newProof := initialProofGoal (newProgram, specification);
Co := initialCandidateList( oldProof , A(oldProgram, newProgram) );
C:=Cy;
while newProof has open goals do
(candidate, newFocus) := chooseReuse(C, oldProof , newProof );
if (candidate, newFocus) # 1 then
newProof := result of applying rule(candidate) at newFocus in newProof’;
if candidate¢ Co then C := C \ {candidate}; fi;
C:= Cu{c|cisachild of candidate in oldProof };
else
newProof := applyRuleWithoutReuse (newProof );
fi;
od;

output newProof;

Pseudocode —

Figure 10.2. Main reuse and proof construction algorithm

At each iteration step, the function chooseReuse is invoked to compute all potential
reuse pairs and choose the most appropriate one. A reuse pair consists of (1) a candi-
date rule application and (2) a potential new focus, i.e., a position in a goal sequent of
the new proof, where the same rule is applicable. The implementation of chooseReuse
is shown in Figure[10.3]* For the reuse pair selection process chooseReuse employs the
similarity function score, which will be discussed later on. The function score is mainly
based on focus similarity.

? We show a nested loop implementation for its clarity. The actual implementation uses an
optimized incremental computation algorithm.
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function chooseReuse(list C of candidates, oldProof, newProof)
possibleReuses := { };
Goals := open goals of newProof;
foreach ceC do
foreach ge Goals do
foreach position p in the sequent of g do
if the rule schema of ¢ is applicable at p then
possibleReuses := possibleReuses U (c, p);
fi;
od;
od;
od;
if possibleReuses={} then return 1 fi;
select (¢, p) from possibleReuses with score({c, p)) maximal;
if score({c, p)) >¢ then
return (c, p);
else
return 1;
fi;

Pseudocode —

Figure 10.3. Function for the best possible reuse pair

The rule of the selected reuse pair is then applied at the target focus, extending
the new proof. The candidate rule application is removed from the list C.* Finally, the
children of the used candidate rule in the old proof tree become new candidates and
are added to C.

In other words: the proof steps appearing in the list C at a given time can be con-
sidered as marked in the template proof. These markers form a “wavefront” extending
through the old proof tree during reuse. The markers are indeed visible in the KeY
prover as »-signs attached to nodes of the template proof tree.

So far, two very important questions remain open: how is the quality of possible
reuse pairs computed (i.e., how does the function score that is used by chooseReuse
work)? And where do the initial candidate proof steps come from (i.e., how does the
function initialCandidateList work)? These questions are answered in Sections [10.3
and[10.4] respectively. Note that our algorithm is “modular” in the sense that the an-
swers can be given independently.

4 Unless it is an initial candidate (i.e., an element of Cy), in which case it is persistent in C.
The reason for making the initial candidates persistent is explained in Section[10.4.
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Avoiding confusion: a quality threshold

While performing reuse, the danger is not only to do too little, but also to do “too
much”. Sometimes, even though there are possible reuse pairs available, it is better to
use none of them. This is not so odd as it seems, since a reuse pair’s existence alone
means little more than a possibility of applying a single rule. Whether the rule is ap-
propriate in a particular context is another question.

The most prominent opportunity for exercising restraint is when a genuinely new
situation in the new proof is reached. In this case we want reuse to stop, since reuse
pairs used up here would not in general be available when an unaffected proof part
is reached again. This does not undermine the correctness of the proof under con-
struction (since the prover only allows correct rule applications), but it can confuse
the user and impede performance.

To safeguard against confusion, we compare the quality scores of reuse pairs to a
threshold value ¢. In case the score of all possible reuse pairs is below e—which is an
indication that we have reached a situation that is either different or not present in the
old proof—a completely new proof step has to be chosen by the user or the automated
proof search procedure (this choice is symbolized by calling applyRuleWithoutReuse
in the algorithm). In the meantime, the system constantly checks whether reuse can
be restarted using one of the available candidates.

What to do with instantiations?

For some rules it is not sufficient to know where they will be applied (i.e., what their
focus is), but additional information is required. For example, (a) the cut formula has
to be known for an application of the cut rule, (b) for induction rules, the induction
hypothesis has to be known, and (c) for quantifier rules, the appropriate instantiation
has to be provided. Since it would be a very hard task to adapt this kind of information
from the old rule application to the new one, we currently attempt to use the same
information as in the old proof.

10.3 Computing Rule Application Similarity

Recall that a possible reuse pair consists of a rule application in the old proof and a
focus (formula, term, or program) in the new proof where the same rule is applicable.

The similarity score for quality assessment of possible reuse pairs is a key part of
our reuse facility, since it is one of the most crucial and difficult parts in our effort.
We have to distinguish between proof parts that are appropriate for reuse in a given
situation and parts that only seem to be so on first sight. In other words, similarity
scoring must prevent mis-application of proof steps from the old proof that are not
appropriate for reuse.

When all possible reuse pairs have been computed for an iteration step of the reuse
algorithm, we are (usually) left with a choice. Several features may influence the qual-
ity of a reuse pair. The first and most important one is the similarity between the ap-
plication foci in the old and the new proof. How it is computed is described in detail
in the following, where we distinguish three kinds of rules:
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Rules for symbolic execution, which focus on a program. The similarity score is de-
termined by comparing the focus programs in the old and the new proof. The
non-program parts of the formulas in question are not considered, since in our
calculus they rarely provide additional discriminating evidence.

Analytic first-order logic and rewrite rules, which manipulate a (sub-)formula or term
without modifying program parts. A similarity analysis of the foci tailored to the
first-order fragment is performed.

Focus-less rules, which are the few rules of our calculus, that do not have a focus. The
score of such a reuse candidate is solely based on other features, in particular
proof connectivity.

To get a single numerical quality value for a reuse pair, we sum up the scores computed
for different features.

Similarity Score for Program Parts

We evaluate the appropriateness of symbolic execution proof steps by comparing the
programs that these steps focus on. In general, symbolic execution rules only touch
the first statement of a program. Our comparison is not limited to the first statement
though, the entire focus programs are considered as well.

A straightforward way to compare two programs is to compute the edit distance
between them, which is the length of the minimal edit script for turning one program
into the other. Since, for example, the particular names of variables, methods, etc.
have no effect on the structure of proofs, we use an abstraction of actual programs for
comparison.

Below, the following steps of the comparison are explained in more detail: (1) the
algorithm for computing the minimal edit script, (2) the program abstraction that we
use, and (3) the computation of a numerical similarity score from an edit script.

Computing the minimal edit script

Currently, our similarity assessment function treats programs as linear sequences of
symbols. Experiments with this implementation show that it is an efficient and suc-
cessful way to compare programs for our purposes. Theoretically, a program similarity
measure based on a tree editing distance algorithm (e.g., [Zhang and Shasha,|1989])
would yield even better discrimination.

In the following we use Myers’s classical Longest Common Subsequence (LCS) al-
gorithm [Myers, 1986] to efficiently compute the minimal edit script of two sequences
of symbols. It takes two sequences

A=aaray and B=b;by--by

as input, where the a; and b; are elements of an arbitrary alphabet, and produces the
minimal edit script for turning A into B.

An edit script is a list of insertion and deletion commands. The delete command
“x D” deletes the symbol at position x from A. The insert command “x I b b,---b,”
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inserts the sequence of symbols b; b,---b; immediately after position x. The script
commands refer to symbol positions in A after the preceding commands have been
executed. The length of the script is the number of symbols inserted or deleted.

Program abstraction

The computation of a minimal edit script requires as input two sequences of sym-
bols. To construct such sequences from the two programs that are to be compared,
we first linearize the programs into a sequence of statements. Then, the statements
are abstracted into statement signatures.

Statement signatures are defined to abstract from names, expressions, most lit-
eral values, etc. That is, they are designed to remove all features that tend not to in-
fluence the shape of the control flow and, thus, proof structure. Abstraction reduces
noise and increases reuse performance. As a byproduct, it allows our algorithm to deal
with such program changes as renamings and changes of literal values. This “coars-
ening” approach has parallels to the technique of boolean program abstraction [Ball
and Rajamani, 2000], which produces an equivalent—in some sense—program with
a reduced state space. In contrast, we are only interested in a means to syntactically
discern related and unrelated programs and not in behavioral refinement.

The first element of the abstraction of a statement S is the name of S (e.g., If,
LocalVarDecl, Assignment). In the following cases, more details are added to the ab-
straction:

o If the statement S is also an expression, the static type of the expression is added.
If, moreover, S is an assignment whose right operand is a boolean literal, then
the value of that literal is appended as well.

o If the statement S is a method invocation, the signature of the method and the
name of the class containing the referenced implementation are added.

The boolean literal assignment has indeed to be treated in this special way. First,
the symbolic execution rules of our calculus often introduce two symmetrical assign-
ments of this kind when branching upon Java’s relational and equality expressions.
Without the special treatment, the two branches would be indistinguishable. Also,
the small domain of the boolean data type and the direct impact of the particular
value assigned on the control flow do not permit removal of this information.

Example 10.1. Consider the following two programs « and j3:

int x; int res;
o =
res = x/X;

8 {int X; int res;

if (x==0) res=1; else res=x/x;

The result of abstracting them into sequences A resp. B of signatures is:
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LocalVarDecl, LocalVarDecl,
Assignment (int)

B {LocalVarDecl, LocalVarDecl,

If, Assignment (int),Assignment (int)

The underlined parts correspond to the insertions in the minimal edit script. It con-
sists of the two commands 21 If and 4] Assignment (int). <

One could devise more elaborate abstraction schemes. Our experience, though,
shows that this only leads to a marginal improvement.

From edit script to similarity score

To compute a similarity score for two programs « and f3, we have computed a minimal
edit script between their abstract representations A and B. Now we must condense this
edit script into a single numerical value.

Definition 10.2 (Program similarity score). Let E(A, B)=¢; e,--e, be the minimal
edit script for the abstractions A, B of programs «, f8. Then, the similarity score of A, B
resp. «, f3 is defined by

5(a,f)=0(A,B) = —ip(e»

where the penalty P(e) for an edit command e is

' 0.75
ife:xlbl bz"'bt
P(e) = X
1 .
—_— ife=xD
x+1

We remind that x is the numeric position of the insertion/deletion as counted from
the beginning of the linearized program. <

Note that higher values of §(«, ) mean higher similarity, and that §(«, f3) is al-
ways less than or equal to zero. The maximal value 0 is reached for programs with
identical signatures. The quality threshold is chosen at —0.72 for the given values of
penalty constants.

The function § is not symmetric, meaning that in general §(A, B) #8(B, A). State-
ment insertions are penalized less than deletions. The reason for defining § in that way
is that additional statements in the new program are easier to handle for reuse than
missing statements. Deleting statements does usually not simply correspond to delet-
ing proof parts but requires more complex changes of the proof.

Program differences are penalised less the farther they are from the active (first)
statement, which is the target of symbolic execution.

> Please note that all numbers provided here are for orientation purposes only. The numbers
in your version of the KeY system may vary.
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Example 10.3 (Examplel10.1 continued). We now consider the minimal edit script for
the programs « and f3 presented above. It consists of the two commands 21 If and
4] Assignment (int).

The similarity score is thus:

0.75 075

-—— 4t —-—=-04,
2+1 4+1

0(a,f)=6(A,B) =
which signifies a medium to high similarity. The score is above the threshold and
warrants reusing the application of the local-variable-declaration rule from the old
proof in the new one. <

Similarity Score for First-order Logic Parts

Assessing the quality of possible reuse pairs that do not deal with symbolic program
execution is a more difficult challenge. This is due to the lower degree of local deter-
minism of the first-order fragment of the calculus and the high “volatility” of first-
order formulas in a proof.

We use two different similarity criteria for first-order-related proof steps. First, a
high bonus (+1.0) is added to the quality score if the foci in the old and the new proof
are identical up to variable renaming. Otherwise, a small penalty (-0.2) is added. Sec-
ond, the two formulas that contain the actual rule application foci are compared in a
similar manner as programs: formulas are linearized, then the names of variables,
functions, etc. are abstracted to their sorts, and finally a minimal edit script is com-
puted. The script is scored uniformly, with every deletion worth a penalty of 0.1 and
every insertion a penalty of 0.05. Additionally, the programs in the formulas con-
tribute their similarity scores with a weight of 0.25.

The results of using these criteria are sufficient for a high ratio of correctly reused
rule applications but are not as good as for rule applications with a program part in
focus.

Similarity Score for Focus-less Rules and a Refinement Based on Proof
Connectivity

An additional feature that can be used to score possible reuse pairs (besides similar-
ity of rule foci), is the connectivity of the new proof (as compared to the old proof).
This criterion gives a bias against tearing apart proof steps that are connected in the
old proof. Reuse pairs disrupting connectivity are assigned a small penalty (of —0.1).
This is enough to tip the scales in case other features do not provide discrimination
between several possible reuse pairs.

10.4 Finding Reusable Subproofs

Our main reuse algorithm requires an initial list of reuse candidates. These initial can-
didates, which are rule applications in the old proof, can be seen as the points where
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the old proof is cut into subproofs that are separately reusable. They are the points
where reuse is re-started after program changes required the user or the automated
proof search mechanism to perform new rule applications not present in the old proof.
The choice of the right initial candidates is important for reuse performance.

Since program changes may lead to additional case distinctions in the new proof,
it may be necessary to reuse old subproofs repeatedly in the new setting. In order to
deal with this necessity, we make the initial candidate proof steps persistent. As shown
in Figure[10.2} the initial candidates (they are the elements of Cy) are not consumed
when they are reused. Thus an initial candidate proof step is always available to seed
the corresponding template subproof when needed.

The way initial candidates are computed depends on the way the program and
thus the initial proof goal has changed. For changes affecting single statements (local
changes) we extract the differences right from the source files, using an implementa-
tion of the GNU diff utility (www.bmsi.com/java/#diff)in Java. The diff utility is
based on the same algorithm by Myers [Myers, 1986] that we use for program similar-
ity scoring. GNU dift is well-known to produce meaningful change sets for modifica-
tions of source files. A number of heuristics help identify common sections of code in
the old and the new program based on diff output. The proof fragments dealing with
these common parts are good candidates for reuse; thus, their root nodes are marked
as initial reuse candidates.

In the KeY system, the differences between program revisions are provided by the
integrated source tracking system based on CVS, which in turn uses GNU diff. Based
on that information, markers for initial reuse candidates are automatically inserted by
our reuse facility into the proof to be reused.

int x; int x; - old
int res; int res; +++ new
res=x/x; if (x==0) { ee@ -1,3 +1,7 @@
res=1; int x;
} else { int res;
res=x/x; +if (x==0) {
} + res=1;
+}else {
res=x/x;
+}
() (b) (c)

Figure 10.4. Change detection with GNU diff: (a) old program, (b) new program, and (c) output
of “diff -uw”

Example 10.4. The output of GNU diff for our running example is shown in Fig-
ure(10.4. The first three lines show bookkeeping information (names of the compared
files, position of the difference found). The lines after this starting with “+” have been
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added to the old program. Lines starting with a “-” (not occurring here) have been
removed from the old program. Lines starting with a space are common to both pro-
grams.

In this example, the common program parts start with the statements int x;
and res=x/x;. Thus we scan the old proof top-down and look for proof steps with
these statements in focus. This procedure yields two initial reuse candidates for our
example. These are the proof steps with the bold border in Figure[10.1 (a). <

Caveats and limitations

We have to note that the heuristics used to detect initial reuse candidates are quite ac-
curate but not infallible. Their biggest adversary is again the fact that program struc-
ture is more adequately represented as a tree than as a linear sequence of symbols,
which is the view we take.

The detection performance can further be impaired, for example, if the program-
mer puts several statements on one line. Given that this is (a) not too common and
(b) explicitly discouraged by the official Java Coding Conventions [Sun Microsystems,
Inc., 2003], we did not provide a solution (such as an additional intra-line diff).

Also, non-local changes, such as renaming of classes or changes in the class hier-
archy, cannot be detected in a meaningful way by the standard dift algorithm; the user
has to announce these changes separately. In the meantime, techniques have been de-
veloped for computing a precise and semantics-aware diff of two Java programs [Api-
wattanapong et al.,2004]. Unfortunately, this work is limited to Java bytecode, which
complicates the workflow in a source-based verification system.

10.5 Implementation and a Short Practical Guide

To profit from reuse we simply have to load another instance of a problem already
present in the prover. A dialog will appear asking whether we want to reuse a previous
proof. If we say yes, the system will analyze the differences in the source code, compute
initial reuse candidates, and, if reuse is indeed possible, enable the »-marked reuse
button.

Hitting the button activates the reuse process. Should reuse stop, the system will
indicate its idea of how the proof continues via a message in the status line: template
proof continues with (rulename). We can hit Alt-space to switch the view to this partic-
ular proof step. Hitting Alt-space again takes us back to the open goal in the current
proof. This can give us some idea of where to steer the proof. Now we have to per-
form proof steps interactively or run a strategy. Once a state is reached where reuse is
possible again, the reuse button will be enabled.

The candidate proof steps (“reuse candidates”) are always distinguished in the
template proof by a »-sign at the corresponding node of the template proof tree. It is
possible to add or remove candidate markers at any time via the context menu of a
proof node. For this, the context menu offers the item mark for reuse, which toggles
the marked state.
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In order to provide feedback, the reuse facility can color the nodes in the proof tree
it constructs with different colors. The ecru (yellowish) nodes are the ones created by
the reuse procedure. Red nodes are the ones where the connectivity of the old proof
has been broken for some reason.

10.6 The Example Revisited

We trace the first few interesting steps in detail, while slightly simplifying the presen-
tation for clarity (e.g., the connectivity feature is not considered).

First, we need to compute a set of initial reuse candidates based on the differences
between the old and the new version of the program (both given in the introduction).
How this is done is explained in Example[10.4] which shows that we obtain two can-
didates in our case. These are the nodes with a bold border in Figure10.1l(a).

For now, we only consider the first one, namely the rule for variable declarations
applied to “int x;” in the old proof (the rule of the second initial candidate concern-
ing “res=x/x;” is not applicable anyway). It has one possible focus in the following
(new) initial proof goal (it cannot be applied to the second variable declaration, since
our calculus always treats the left-most statement first):

= (int x; int res; (G0)

if (x==0) res=1; else res=x/x;)(res=1)

The similarity score for the single possible reuse pair (see Example[10.1 for the com-
putation) is —0.4, and reuse is performed. We get the new goal

= (int res; (G1)

if (x==0) res=1; else res=x/x;)(res=1)

and a new reuse candidate (the child of the initial candidate in the old proof), which
is again an application of the rule for variable declarations, this time applied to
“int res;” It also has one possible focus in the new proof in goal (G1). The similar-
ity score for the resulting possible reuse pair is —0.62. This is less than before as there
are now fewer identical parts in the programs of the old and the new focus, and the
first difference is closer to the active statement. Nevertheless, reuse is still indicated.
The resulting new goal sequent is

= (if (x==0) res=1; else res=x/x;)(res=1) (G2)

and the new candidate is the rule handling the assignment “res=x/x;” in the old
proof (which happens to be identical to the second initial candidate). This candi-
date, however, is not applicable in (G2). We have reached a genuinely new part of
the amended program and, thus, of the proof.

To deal with the new program parts, where no reuse is possible, we manually apply
the rules for handling the if statement and evaluating its condition (in practice this
can be done automatically). The proof tree splits, and we get two subgoals:
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—=x=0—> (res=1;) (res=1) (G21)
= —(x=0) —> (res=x/x;) (res=1) (G2.2)

There are still two identical candidate proof steps with the rule tackling “res=x/x;".
This rule cannot be applied to (G2.1), as handling an assignment with a literal instead
of a division on the right requires a different rule. But the candidate can, of course, be
applied to (G2.2). The similarity score for this possible reuse pair is 0.0. The candidate
is reused, and (G2.2) is replaced by two new subgoals:

= =0~ (G2.2.1)
-(x=0) — (res=div(x,x) — () (res =1))

= - ( X= ()) —
(G2.2.2)
x=0 — (throw new ArithmeticException();) (res=1)

We now have three open goals: (G2.1) is on the “new” branch, (G2.2.1) is on the “nor-
mal execution” branch, and (G2.2.2) is on the “division by zero” branch. Things get a
bit complicated now as we also obtain two new reuse candidates. Both are applications
of the same rule, namely the first-order logic rule for handling implications; their foci
are:

-(x=0) — ({res=div(x,x)} () (res =1)) (C-N)
x=0 — (throw new ArithmeticException();)(res=1) (C-2)

Each of these two candidates has a possible focus in all three open goals. Thus we
obtain six possible reuse pairs, of which in fact only two are appropriate—(C-N) must
be reused at (G2.2.1) and (C-Z) at (G2.2.2), not the other way round. We also do not
want to waste any of these two candidates on the branch (G2.1), which was not present
in the template. The reuse facility computes the following quality scores for the six
pairs:

(C-N) (C-Z)
(G2.1) -0.53 -0.81

(G2.21) |-0.35 -0.77
(G2.2.2) |-0.58 -0.35

As desired, the two right possibilities (shown in bold) have the highest similarity
scores and are selected for application. Subsequently the candidate markers move on,
and the other 4 possible reuse pairs become obsolete.

From here on, reuse can be continued to the successful completion of the proof. If
we immediately close the branch under (G2.2.2), which is obviously futile in the new
situation, the new proof consists of 45 proof steps, of which 27 have been reused.®
This is the optimal reuse performance for the given correction. More important than
the numbers, though, is the fact that all unaffected parts of the old proofs could be
reused completely. For a complicated program, these parts would normally contain
non-trivial user interactions (quantifier instantiations, use of lemmas, etc.). Saving
these is the main benefit of reuse.

® The numbers can vary with the version of the KeY system.
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10.7 Other Systems and Related Methods

In this section we give a short survey and comparison of proof reuse-related methods
as employed by a number of different verification systems.

Global abstraction methods

An alternative to incremental reuse presented here is global proof abstraction. This
broad group of methods attempts to capture the overall gist of whole proofs—at
once—and instantiate it for a new problem. Examples are Kolbe and Walther’s tech-
nique for proving conjectures by induction [Kolbe and Walther, 1994] and the efforts
of the Omega Project [Melis and Whittle,[1999]. To our knowledge, this approach has
not been successfully applied to verification of object-oriented software. This might
be attributed to the fact that the relevant changes in this domain are of local nature.

Constructive methods

Another non-incremental technique for reusing proofs is constructive reuse. The con-
structive approach is to analyze the changes made to the proof goal (i.e., the program
to be verified) and their effects, and to use this information to identify and reassem-
ble parts of the template proof into a new one. This approach, however, needs to have
exact knowledge of all calculus rules and effects of program changes (“when an if-
statement is inserted, an application of the if-rule must be added to the proof and,
below that, the proof branches...”). Thus, constructive methods are infeasible for cal-
culi with complex target programming languages (e.g., Java) and a large number of
rules.

The software verification system KIV [Balser et al., 2000a], for example, contains
a constructive proof reuse facility [Reif and Stenzel, 1993]. It works well as the pro-
grams that are verified with KIV are written in a simple Pascal-like language, and the
KIV calculus has only a comparatively small number of program logic rules.

Replay methods

The simplest incremental reuse method is to just replay the (old) proof script. This
works well as long as the information in which the new proof must differ from the old
proof is not contained in the (linear) script but can be inferred during rule application.
An example for such types of information are the instantiations of schema variables,
which are computed by a matching algorithm. Significant changes in proof structure,
however, cannot be handled by a simple replay mechanism.

A typical example for this kind of reuse is the replay mechanism of the Isabelle
theorem prover [Nipkow et al., 2002]. It is quite powerful as its proof scripts (usually)
contain neither variable instantiations nor the foci of rule applications (which are in-
ferred during rule/tactic application according to simple rules). On the other hand,
it cannot automatically cope with changes in proof goal ordering or automatically re-
sume reuse after an intermittent failure.
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Similarity guided methods

Melis and Schairer pursue another variation of replay [Melis and Schairer, 1998]; this
time specifically for reuse of subproofs in the verification of invariants of reactive sys-
tems, which are specified using first-order logic. Due to symmetries and redundancies
in the state space, such proofs give rise to many similar subproofs.

Melis and Schairer’s approach identifies a suitable previously solved subprob-
lem via a similarity measure on first-order formulas and replays the stored subproof
straight on.

This method is related to our work as it operates under the assumption that similar
situations (proof goals) warrant similar actions (rule applications or subproofs). The
similarity assessment though is performed only once, which is justifiable by a simpler
setting.

10.8 Reuse in the Verification Cycle

In this section we discuss how proof reuse fulfills a need that goes beyond the basic
scenario that we have presented so far.

10.8.1 The Case of a Changed Class Hierarchy

Fixing a bug is the most obvious but not the only reason for re-doing proofs. Un-
fortunately, every addition or removal of a class in a Java program potentially invali-
dates all proofs about this program. The problem is that, for two program-related rule
schemata of our calculus the particular rule instance depends on the set of classes
constituting the program. Using an old instance in the new context may be unsound.
The rules in question are:

« the method call rule, which creates an if-cascade simulating dynamic binding and
ranging over all possible implementations of a method

o the typeAbstract rule, which implies that a domain element belonging to some
abstract type, already belongs to some more specific non-abstract type:

tEAtEB V-V tEB,—

typeAbstract
tEA=

with Ae T, and By, ..., By the direct subtypes of A

The problem lies here with the Java language, and while this situation can be al-
leviated, it cannot be completely eliminated in a verification tool. In some cases, effi-
cient criteria can establish that the validity of a particular proof is/is not affected by
a particular change of the class hierarchy.” For example, an instance of the method
call rule remains valid if the added class does not override the method in question.

7 See, for instance, [Roth, 2006] for a detailed discussion.
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Nonetheless, the lack of a sufficiently strong module system in Java [Corwin et al,,
2003] impedes modular verification and makes every change of the class hierarchy
more costly than one would desire.

In general, such changes demand a re-doing of proofs, most of which will stay to
a great extent the same. Here reuse can help.

10.8.2 The Case of a Changed Specification

A problem that is a symmetrical variation of the main reuse scenario presented so far
is a case of a revised specification. Given a (partial) proof for (p)¢ we are trying to
construct a proof for (p)¢’, where ¢’ is a (slightly) revised version of ¢. While this
case occurs probably just as often as a change of the program, the outlook for reuse is
not as optimistic.

Usually, the specification is provided in a high-level language like OCL or JML,
which is then translated into Dynamic Logic. A small change of the specification
is more likely to produce a significantly different proof obligation. Furthermore, the
choice of reuse candidates in the template proof is far from obvious (apart from the
root node).

Altogether, it is hardly possible to give a performance prediction, but the proce-
dure might still be helpful in a given case.

10.8.3 The Case of Interactive Proof Search

Complicated proofs almost always require user interaction. Even worse, the quality
of the choice required from the user often becomes apparent only much later in the
proof. For instance, many proof steps after choosing an induction hypothesis one reg-
ularly finds out that it has to be amended for the proof to be successful. In many cases
the required change is actually quite simple, like adding a premiss.

In theory, this is not a problem, since the KeY calculus is confluent. Confluence
means that there are no dead ends or blind alleys: it is always possible to extend any
partial proof to completion if a proof exists at all. In practice this is a small consolation,
since the remnants of the old proof attempt clutter the sequents making it impossible
to concentrate on the new one.

This way, we are usually stuck with the only choice of performing undo all the
way back to the regrettable decision and re-constructing the rest of the proof. Now, it
would be tempting to have the ability to edit the proof tree “in place”, but this would
require some very elaborate presentation. With proof reuse we obtain an alternative
solution to the problem.

Here’s how it works in practice. If we think that a proof step needs revision, we
select this step (node) in the proof tree. From the context menu we select change this
node. A clone of the current problem instance will be created, with reuse active. Ac-
tivating reuse will re-enact the existing proof up to the step we wish to change. Then
reuse will stop, and we have the possibility to revise our choice at this point. After
that, it is possible (if the new situation allows) to reuse the rest of the old attempt in
the new setting.
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10.8.4 The Case of Redundant Subproblems

Sometimes a verification problem gives rise to several similar subproblems. These may
be symmetrical in some sense, or maybe even identical. Having solved one of them it
is possible to employ the reuse mechanism to solve the others.

In practice, we identify the root node of the desired template subproof and mark
it as a reuse candidate using the contextual menu of the proof tree. The reuse facility
then automatically identifies an open goal where this solution may be applicable and
attempts to adapt it to the new target in the usual fashion.

10.8.5 The Case of Using Customizable Calculus Modules

Another opportunity for proof reuse arises when using customizable calculus mod-
ules. There are several areas of the KeY calculus where the calculus designers provide
alternative sets of rules for the user to choose from. These rule sets have different
properties and are tailored towards different verification tasks and scenarios. The ar-
eas covered by such customizable modules include: null dereferencing checks (on or
off), treatment of static initialization (on or off), integer semantics (three different
ones) and others. The user of the KeY system can mix and match the rule sets for each
verification problem.

Usually, in order to reduce complexity, it is recommended to verify a program with
a “simple” calculus version first and then incrementally add assurance by repeating
the proof with a more involved calculus setting. In this proof reuse is a real help. We
illustrate this using verification of integer manipulation in programs. The approach
of choice here is to verify a program using the mathematical integer semantics, and
afterwards repeat the proof with the so-called Rg.y-semantics.

The rules of Rg.y-semantics differ from the mathematical rules by an additional
premiss, which is boxed in the following example of an addition rule:

assignmentAdditionToUpdateCheckingOF

Range.(se), Range.(se;) => Range . (se; + se;)

= {var:=se, + se; }(m w)¢

= (7 var=se;+se;; w)¢

This means that the R,y -proof has an additional branch for every arithmetical oper-
ation considered during the proof.

Once we are satisfied with a proof that uses mathematical integers, we change the
integer semantics to the Rg.y-based one and reload the problem. The reuse facility
creates a single reuse candidate at the root of the template proof. Activating reuse pro-
duces a copy of the template with the additional open branches mentioned above. Dis-
charging these branches yields a proof that the program is functionally correct w.r.t.
the finite range of Java integers. Note that we did not have to engineer any knowledge
about the particular structure of the rules or the ordering of the premisses.

The above scenario can also be seen as a benign instance of a more general—and
still open—problem, which we discuss in the following section.



154 10 Applying Proof Reuse in the Verification Cycle
10.8.6 The Case of a Changed Proof System

A fact seldomly acknowledged by verification solution providers is that a significant
part of the verification cost is due to changes in the verification system itself. If proofs
are used as certificates for program correctness, they often have to be maintained over
a longer period of time, possibly over many years. For most purposes, it is essential
that proofs can be loaded, checked, and manipulated within the verification system
during their lifetime. On the other hand, modifications to the proof system itself are
to be expected in the meantime.

These modifications are quite frequent and can force users to redo proofs, mostly
for two reasons. The first reason is that a critical bug has been fixed in the system and
the correctness assertions—while mostly still valid—have to be re-proved with the
fixed version. The second reason is that the improved performance and usability of
the new version warrants an upgrade. But, of course, every upgrade also has a down-
side. Old proofs stored on persistent media may have become obsolete and require
significant effort to salvage their content. This is a problem for all verification systems
that store proofs.

During the years of the development of the KeY system we have encountered nu-
merous changes in the following areas:

logic syntax

parser/disambiguation

formalization of the Java language semantics
logical structure of the rules

rule execution engine

S

We briefly discuss the important change classes (3) and (4). Together with Bormer
[2007] we have extended the reuse facility to automate translation of proofs between
versions of the proof system affected by these changes. The translation mechanism
can load a “legacy” proof with the old rule base and simultaneously an identical proof
obligation with the new rule base. The system calculates reuse markers from the diff
between rule bases. The reuse process then supports efficient porting of the old proof
to the new rule base.

Case (3) arises when minor errors in the symbolic execution rules of the KeY cal-
culus have to be fixed. This happens infrequently, but cannot be ruled out, since one
can never arrive from an informal specification at a formal one by formal means.®
The KeY project on regular bases performs the only measure suitable to mitigate this:
cross-checking our rules with other formalizations of Java. A recent check of this
kind [Trentelman, 2005] has discovered a missing case in our array assignment rule.
The erroneous rule and its correction are presented in Figure[10.5] As one can see, the
changes are minor and of local nature, lending themselves nicely to similarity-guided
proof reuse.

The case (4) is usually not concerned with soundness, but with efficiency. At one
point some rules containing a potential case distinction have been reformulated from

® For an in-depth discussion of the calculus soundness issue please see Chapter|9]
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a=null=> (7 throw new NPE(); w)¢
a#null A (i<0Vi>a.length)=>(n throw new AOBE(); w)¢
a#null Ai>0Ai<a.length={a[i]:=val}{n w)¢

= (n alil=val w)¢

a=null=> (7 throw new NPE(); w)¢
a#null A (i<0Vi>a.length) = (7 throw new AOBE(); w)¢
a#null Ai>0Ai<a.length A —storable(val,a) = (n throw new ASE(); w)¢
a#null A i>0 A i<a.lengthAstorable(val,a) = {a[i]:=val}(n w)¢

= (n alil=val w)¢

Abbreviations: NPE=NullPointerException
AOBE=ArrayIndexOutOfBoundsException
ASE=ArrayStoreException

Figure 10.5. A rule for array assignment: initial and revised version (differences are boxed)

the form splitting the proof (e.g. ifElseSplit) to a form employing a conditional for-
mula (rule ifElse, both rules are given in Section [2.7.2), which has the advantage that
one has to reason about the condition only once. Also in this case, proof reuse can
enable a smoother transition to the upgraded calculus.

10.9 Conclusion

Practitioners often report that the cost of re-verification is a serious bottleneck in real
world formal methods applications [Denney and Fischer, 2005]. We have presented a
proof reuse method that works surprisingly well for a broad range of deductive pro-
gram verification tasks. The method is very flexible and requires no modification even
as the calculus is constantly evolving. Also, no knowledge has to be built into the
method concerning the effects that a certain program change has on the structure of
the correctness proof.

The main reason why the method works is that programs are exceedingly informa-
tion-rich artifacts, and the KeY calculus preserves this richness with a highly locally
deterministic design. First, symbolic execution rules only apply at the foremost, or
active, statement of the program, and, second, there is no rule for sequential com-
position, so active statements do not “multiply”. This way, there are usually only few
possible foci for a particular rule to extend a given partial proof.

We have shown that proof reuse has many applications in the verification process
beyond the simple scenario presented at first. We have also discussed the biggest re-
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maining challenge: the case when the specification of a system is modified. We have
given instructions on using the reuse implementation within the KeY prover.

We are thankful to Bernd Fischer and Dieter Hutter for very helpful comments on an earlier
version of this text.
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