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Abstract

So�ware is vital for modern society.�e e�cient development of correct and reliable
so�ware is of ever-growing importance. An important technique to achieve this goal
is deductive program veri�cation: the construction of logical proofs that programs
are correct.
In this thesis, we address three important challenges for deductive veri�cation on

its way to a wider deployment in the industry:

1. veri�cation of thread-based concurrent programs
2. correctness management of veri�cation systems
3. change management in the veri�cation process.

�ese are consistently brought up by practitioners when applying otherwise mature
veri�cation systems.�e three challenges correspond to the three parts of this thesis
(not counting the introductory �rst part, providing technical background on the KeY
veri�cation approach).
In the �rst part, we de�ne a novel program logic for specifying correctness proper-

ties of object-oriented programs with unbounded thread-based concurrency. We also
present a calculus for the above logic, which allows verifying actual JAVA programs.
�e calculus is based on symbolic execution resulting in its good understandability
for the user. We describe the implementation of the calculus in the KeY veri�cation
system and present a case study.
In the second part, we provide a �rst systematic survey and appraisal of factors

involved in reliability of formal reasoning. We elucidate the potential and limitations
of self-application of formal methods in this area and give recommendations based
on our experience in design and operation of veri�cation systems.
In the third part, we show how the technique of similarity-based proof reuse can

be applied to the problems of industrial veri�cation life cycle. We address issues (e.g.,
coping with changes in the proof system) that are important in veri�cation practice,
but have been neglected by research so far.
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1

Setting the Stage

1.1 What So�ware Veri�cation Needs in Practice

So�ware is vital for modern society.�e e�cient development of correct and reliable
so�ware is of ever-growing importance. An important technique to achieve this goal
is deductive program veri�cation: the construction of logical proofs that programs
are correct. Logic-based technologies for the formal description, construction, anal-
ysis, and validation of so�ware can be expected to complement and partly replace
traditional so�ware engineering methods in the future.
Already, program veri�cation methods have outgrown the area of academic case

studies, and industry is showing serious interest. While the basic ideas of so�ware ver-
i�cation have been known for a long time, research is still needed in order to achieve
reach and power to assure reliability of object-oriented programs in the industrial
setting.

�is thesis presents work towards this goal. In particular, we address three im-
portant challenges for deductive veri�cation on its way to a wider deployment in the
industry:

1. veri�cation of thread-based concurrent programs
2. correctness management of veri�cation systems
3. change management in the veri�cation process.

While there are numerous other challenges in the �eld (including so�ware and proof
modularization, e�cient deduction, proof visualization and counterexample genera-
tion), these are the ones consistently brought up by practitioners when applying oth-
erwise mature veri�cation systems in the industry.
Industrial so�ware practice di�ers from academic practice in one central aspect:

veri�cation practitioners donot have full control of the setting. In particular, they can-
not dictate the choice of programming language, programming environment (hard-
ware and so�ware) and programming style. Industrial development is characterized
by presence of development cycles, third-party dependencies, and the fact that the
�nal product indeed may be deployed, o�en on a variety of di�erent platforms.
We now describe the individual challenges in more detail.
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Veri�cation of multi-threaded programs

Academic research hasmostly postponedworking on deductive veri�cation of object-
oriented thread-based concurrent programs. At this point, further postponing is no
longer appropriate. Concurrency is probably the single aspect of programming prac-
tice that has gained most importance lately. On the hardware side this trend is fueled
by proliferation of multi-core processors and embedded platforms supporting multi-
threading. On the so�ware side, most modern applications concerned with network-
ing, graphical user interfaces or resource control have concurrent aspects. Indeed,
formal method practitioners now o�en claim that “all [their] problems involve con-
currency” [Cook, 2007].

Correctness management

Correctness is never an absolute. Simply applying deductive veri�cation does not au-
tomatically lead to a system that never fails. Instead, correctness has to be managed.
Not properly understanding the issues involved leads to wasted resources at best or a
false sense of security at worst.�is is particularly true in an environment involving
third-party products, such as hardware, compilers, libraries, etc.
Issues that research has to address in this �eld are:

• to show how veri�cation works together with other engineering techniques for
achieving high assurance with the minimal use of resources

• to develop, evaluate and comparemethods for assuring correctness of veri�cation
calculi and their implementations

• to clarify the guarantees that formal methods provide (or not provide) and their
respective assumptions.

Management of change

All components in the industrial veri�cation process—programs, speci�cations, and
also the veri�cation systems themselves—undergo constant change. Correctness as-
surances (in our case proofs) constructed with a lot of e�ort quickly become obsolete
during the development or maintenance cycle.�e current state of a�airs in the �eld
resembles programming prior to the invention of modern version control systems.
Formal methods practitioners at NASA state that re-certi�cation costs—with deduc-
tive veri�cation contributing a big part—are the biggest bottleneck in construction of
dependable so�ware [Denney and Fischer, 2005].
Proper change management is crucial for cost-e�ective production of veri�ed

so�ware. �is involves keeping track of correctness assertions as their constituents
evolve (dependency management) and salvaging e�orts invested into construction of
their previous versions (proof reuse).

1.2 Contributions

�e narrator pronoun “we” in this thesis already refers to pluralis auctoris, the author’s
plural. Still, to avoid ambiguity, I use the singular form in this section.
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Contribution Summary

�e main contributions of this thesis are:

• a novel program logic for an object-oriented language with unbounded thread-
based concurrency

• an implemented calculus for full functional veri�cation of a substantial fragment
of multi-threaded JAVA programs

• a �rst implemented calculus for proving JAVAMemory Model-safety of programs
that takes both locking and volatile variable synchronization into account

• a �rst comprehensive analysis of the factors involved in reliability of formal rea-
soning in large domain-speci�c theories and the methods to achieve it

• a novel application of a proof reuse technique developed by me earlier to solve
several important problems in the veri�cation life cycle.

Many of the results presented in this thesis have already been published in workshop
and conference proceedings, or as book chapters.�ese publications are referred to
in the following, and their full list is included on page 157.

Chapter Breakdown

Part I

Chapter 2 provides standard introductory material on the KeY approach.�e content
of this chapter is based to a large extent on the Chapter “Dynamic Logic” in the KeY
book [Beckert et al., 2007b], which I have co-authored. I have reworked, simpli�ed
and compressed the presentation, though, abstracting from details unimportant here.
�is chapter also incorporates material I have co-written for [Beckert et al., 2007a].

Part II

Chapter 3 gives a quick �rst glance at the proposed logic and proof system for multi-
threaded JAVA programs. I discuss which features of JAVA concurrency are supported
and survey related work.
Chapter 4 de�nes a novel logic (syntax and model-theoretic semantics) for an

object-oriented language with unbounded thread-based concurrency.�e logic has
good “understandability” as it is close to the programmer’s view of the language. On
the semantical side, I show—surprisingly maybe—how scheduling non-determinism
can be modeled adequately by an underspeci�ed deterministic scheduler. An early
form of the logic has been published in [Beckert and Klebanov, 2007a].
Chapter 5 re�nes the basic version of the logic with a more veri�cation-friendly

scheduler formulation. For this, I have taken the notion of symmetry reduction that is
well-established in model checking and extended it signi�cantly for the use in deduc-
tive veri�cation. �e re�ned scheduler model avoids explicit thread enumeration or
total ordering of many independent events, thus making reasoning about unbounded
multi-threading e�cient.
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Chapter 6 presents a calculus for veri�cation of actual concurrent JAVA programs.
�e calculus is based on symbolic execution, which is—to our knowledge—the �rst
application of this technique to veri�cation of multi-threaded programs.�e advan-
tage of symbolic execution (“forward reasoning”) lies in its good understandability
for the user.�e calculus has been published in [Beckert and Klebanov, 2007a].
Chapter 7 includes several extensions and re�nements of the basic calculus. One

is an experimental extension to verify programs with condition variables (revising
[Beckert and Klebanov, 2007b]). Another is the �rst implemented synchronization-
complete calculus for establishing safety of real JAVA programs w.r.t. the Java Memory
Model. Other veri�cation systems available to date either ignore the issue altogether
or are incomplete in this regard (do not consider synchronization edges based on
volatile variables). An early precursor of this work has been published in [Klebanov,
2004].�e chapter concludes with a discussion of future work.
Chapter 8 describes the implementation of the calculus in the KeY system and

presents case studies.

Part III

Chapter 9 provides a �rst pragmatic survey and appraisal of all the factors involved in
reliability of formal reasoning. Experience shows that the �eld su�ers from ambigu-
ous terminology, misconceptions, and methodical bias.�ough the individual issues
raised may be known to many experts, there has been so far no uni�ed view on the
problem.
I provide such a view and, in particular, elucidate the potential and limitations of

self-application of formal methods. I summarize the situation in the KeY project and
give recommendations based on my experience in design of veri�cation systems.
An early version of this work has been published as [Beckert and Klebanov, 2006].

Part IV

Chapter 10 presents a framework for similarity-based proof reuse in deductive so�-
ware veri�cation. While the technique itself, which I have developed earlier (but in-
clude here for completeness), is not part of this thesis’ contribution—its novel appli-
cations in the industrial veri�cation life cycle are. I show how the technique can be
used to make the life of veri�cation engineer easier. I address the issues (e.g., coping
with changes in the proof system) that are important in veri�cation practice, but have
been neglected by research so far.

�e new results in this chapter have been published in [Beckert and Klebanov,
2004; Beckert et al., 2005] and in the Chapter “Proof Reuse” of the KeY book [Kle-
banov, 2007] (which I authored).

1.3 Typographic Conventions

In this text we use a number of typesetting conventions. Concrete expressions from
programming languages are written in typewriter font. Mathematical meta sym-
bols are set inmath font. Names of calculus rules are set in sans serif font.
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What You Need to Know about KeY

�is chapter provides the context for the work documented in this thesis and makes
this text mostly self-contained. Details mentioned as irrelevant can be found in the
KeY book [Beckert et al., 2007].We still hope that even without this primer the subse-
quent chapters are understandable for a reader with a background in formal methods
and a super�cial knowledge of the KeY approach.
First, we give a brief overview of the KeY system followed by a not-so-brief tech-

nical background. It begins with a discussion of the main concepts of the JAVA CARD
Dynamic Logic of KeY.�e syntax and semantics of the logic are formally de�ned in
Sections 2.3 and 2.4. Finally, in Section 2.5–2.10, we present the JAVA CARDDL calculus,
which KeY uses for veri�cation of JAVA CARD programs.

2.1 KeY is a Veri�cation System for JAVA

�e KeY system is the main so�ware product of the KeY project, a joint e�ort between
the University of Karlsruhe, Chalmers University of Technology in Göteborg, and the
University of Koblenz. �e KeY system is a formal so�ware development tool that
aims to integrate design, implementation, formal speci�cation, and formal veri�ca-
tion of object-oriented so�ware as seamlessly as possible. At the core of the system is
a deductive veri�cation component that implements a free-variable sequent calculus
for �rst-order Dynamic Logic for JAVA.

�e architecture of the KeY system is shown in Fig. 2.1. Optional plugins to the
popular Eclipse IDE and to the Borland Together CASE tool suite have been devel-
oped to lower the entry hurdle for users with no or little training in formal methods.
KeY supports several languages for specifying properties of object-oriented models.
Many people working with UML or model-driven development have familiarity with
the speci�cation language OCL (Object Constraint Language), a part of UML 2.0.
Another supported speci�cation language, which enjoys popularity among JAVA de-
velopers, is JML (Java Modeling Language). KeY can also translate OCL expressions
to natural language (English and German).
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Figure 2.1. Architecture and interfaces of the KeY system

�e target programming language for veri�cation in KeY is JAVA CARD 2.2.1. KeY is
the only publicly available veri�cation tool that supports the full JAVA CARD standard
including the persistent/transient memory model of the card devices and the atomic
transactions. Rich speci�cations of the JAVA CARD API are available both in OCL and
JML. JAVA 1.4 programs that respect the limitations of JAVA CARD (no �oats, no re-
�ection, no dynamic class loading) can be veri�ed as well. Veri�cation of (restricted)
multi-threaded programs has become possible with this work.

�e system is not a classical veri�cation condition generator (VCG), but a theorem
prover for program logic that combines a variety of automated reasoning techniques.
�e KeY prover is distinguished from most other deductive veri�cation systems in
that symbolic execution of programs, �rst-order reasoning, arithmetic simpli�cation,
external decision procedure calls, and symbolic state simpli�cation are interleaved.
Symbolic execution is typically carried out in a fully automated manner as long as
loops are bounded or an invariant is available.
While we constantly strive to increase the overall degree of automation, user inter-

action remains indispensable in deductive program veri�cation.�emain design goal
of the KeY prover is thus a seamless integration of automated and interactive proving.
E�ciency must be measured in terms of user plus prover, not just prover alone. Ac-
cordingly, the strong point of KeY is a combination of a good user interface for proof
state presentation and rule application, a high level of automation, extensibility of the
rule base, and a calculus without backtracking.
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KeY itself is made up of ca. 124,000 lines1 of JAVA code.�e standard rule base con-
sists of 1,725 rules that are written in about 15,000 lines of KeY’s “taclet” rule descrip-
tion language. About 1,300 of these formalize the semantics of the JAVA programming
language.�e system has been created by 14 implementors since 1999, who spent a
total of about 30 person years. Version 1.0 of the KeY system has been released in con-
nection with the KeY book [Beckert et al., 2007]; current version is KeY 1.4.�e KeY
tool is available under GPL and can be downloaded from www.key-projet.org.
2.2 Foundations of Dynamic Logic

�e logical basis of the KeY system’s so�ware veri�cation component is an instance
of Dynamic Logic (DL) [Harel, 1984; Beckert, 2001].�e principle of DL is the for-
mulation of statements about program behavior by integrating programs and formu-
las within a single language. Such a language is constructed by extending some non-
dynamic logic with parameterized modal operators ⟨p⟩ and [p] for every legal pro-
gram p of some programming language. In our case, the non-dynamic base logic is
typed �rst-order predicate logic, and the programming language is JAVA CARD. �e
programs p within the modal operators are JAVA CARD statements, and the logic of
KeY is called JAVA CARD Dynamic Logic or, for short, JAVA CARD DL.

�e operators (modalities) ⟨p⟩ and [p] refer to the �nal state of p and can be placed
in front of any formula.�e formula ⟨p⟩ϕ expresses that the program p terminates in
a state in which ϕ holds, while [p]ϕ does not demand termination and expresses that
if p terminates, then ϕ holds in the �nal state. For example, “when started in a state
where x is zero, x++; terminates in a state where x is one” can in DL be expressed asx=0Ð→⟨x++⟩(x=1).
Presence of modalities raises an important semantical issue of program determin-

ism. Determinism here means that a program, for the same initial state resp. the same
inputs, always has the same behavior—in particular, the same �nal state (if it termi-
nates) resp. the same outputs. When we do not (exactly) know what the initial state
resp. the inputs are, we may not know what (exactly) the behavior is, but it is still
deterministic. In particular, we do not consider unknown inputs as a source of non-
determinism.
In contrast, there can be more than one �nal state if the programming language

contains non-deterministic constructs and a program uses them.�e JAVA CARD lan-
guage is sequential and deterministic, and there is exactly one �nal state (if p termi-
nates normally, i.e., does not terminate abruptly due to an uncaught exception) or
there is no such state (if p does not terminate or terminates abruptly). We will discuss
determinism of multi-threaded programs later in Chapter 3.
Deduction inDL, and in particular in JAVA CARDDL is based on symbolic program

execution and simple program transformations (⇒ Sect. 2.5.5) and is, thus, close to a
programmer’s understanding of JAVA.

1 Not counting comments. �ese numbers are based on our estimates and the results of the
SLOCCount tool (www.dwheeler.om/sloount).

www.key-project.org
www.dwheeler.com/sloccount
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2.3 Syntax of JAVA CARD DL

We start with the de�nition of the underlying type hierarchies and the signatures of
JAVA CARD DL.�en, we de�ne the syntax of JAVA CARD DL, which consists of terms,
formulas, and a new category of expressions called updates.

2.3.1 Type Hierarchy

�e type system of the KeY logic is designed to match the JAVA type system. In JAVA,
there are two type concepts that should not be confused:

1. Every object created during the execution of a JAVA program has a dynamic type.
If an object is created with the expression new C(...), then C is the dynamic
type of the newly created object.�e dynamic type of an object is �xed from its
creation until it is garbage collected.�e dynamic type of an object can never be
an interface type or an abstract class type.

2. Every expression occurring in a JAVA program has a static type.�e dynamic type
of an object that results from evaluating an expression is always a subtype of the
static type of that expression. In contrast to dynamic types, static types can also
be abstract class types or interface types.

�is distinction is re�ected in the logic by assigning static types to expressions (terms)
and dynamic types to their values (domain elements).�e logic also includes type casts
(changing the static type of a term) and type predicates (checking the dynamic type of
a term) in order to reason about inheritance and polymorphism.�ese operators are
not important for this work, though.

�e notion of a type hierarchy, groups all the relevant information about types and
their subtyping relationships.

De�nition 2.1. A type hierarchy is a quadruple (T ,Td ,Ta , ⊑) of
• a �nite set of static types T ,
• a �nite set of dynamic types Td ,
• a �nite set of abstract types Ta , and
• a subtype relation ⊑ on T ,

such that

• T =Td ∪̇Ta

•�ere is an empty type �∈Ta and a universal type ⊺∈Td .
• ⊑ is a re�exive partial order on T ,
• �⊑A⊑⊺ for all A∈T .
• T is closed under greatest lower bounds w.r.t. ⊑. We write A ⊓ B for the greatest
lower bound of A and B and call it the intersection type of A and B. �e existence
of A⊓ B also guarantees the existence of the least upper bound A⊔ B of A and B,
called the union type of A and B.
• Every non-empty abstract type A∈Ta ∖ {�} has a non-abstract subtype: B∈Td

with B⊑A.
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We say that A is a subtype of B if A⊑B.�e set of non-empty static types is denoted
by Tq =T ∖ {�}. �

Note 2.2. We are, of course, only interested in type hierarchies that are “useful”.�e
KeY system automatically populates the type hierarchy with the types relevant for the
program(s) being veri�ed. For instance, it is ensured that:

1. A∈Ta for all interface and abstract class types A declared in or imported into p.
2. A∈Td for all non-abstract class types A declared in or imported into p.
3. C⊑D i�C is implicitly or explicitly declared as a subtype ofD (using the keywordsextends or implements), for all (abstract) class or interface types C ,D declared
in or imported into p.

4. the type hierarchies contain appropriate array types.

�e type hierarchies also always contain the types such as boolean, the root reference
type Object, and the type Null, which is a subtype of all reference types. Finally, they
contain several integer types, including both the range-limited types of JAVA and the
in�nite integer type Z. �

Most of the notions de�ned in the remainder of this chapter depend on some type
hierarchy. In order to avoid cluttering the notation, we assume that a certain �xed type
hierarchy (T ,Td ,Ta , ⊑) is given, to which all later de�nitions refer.
2.3.2 Signature

We now de�ne the set of symbols that the language JAVA CARD DL consists of. In con-
trast to �rst-order signatures, we have two kinds of function and predicate symbols:
rigid and non-rigid symbols. Consequently, the set of function symbols is divided into
two disjoint subsets FSymr and FSymnr of rigid and non-rigid functions, respectively
(the same applies to the set of predicate symbols). Intuitively, rigid symbols have the
samemeaning in all program states (e.g., the addition on integers or the equality pred-
icate), whereas the meaning of non-rigid symbols may di�er from state to state. Non-
rigid symbols are used tomodel program variables such as (local) variables, attributes,
and arrays outside of modalities; i.e., non-rigid symbols represent program variables
as terms in the logic. Program variables can thus not be bound by quanti�ers—in
contrast to logical variables. Note that in classical DL there is no distinction between
logical variables and program variables (non-rigid constants).

De�nition 2.3 (JAVA CARDDL signature). A JAVA CARDDL signature (for a given type
hierarchy) is a tuple

Σ=(VSym, FSymr , FSymnr , PSymr , PSymnr , α)
consisting of

• a set VSym of variables
• disjoint sets FSymr of rigid function symbols and FSymnr of non-rigid function
symbols such that together FSym=FSymr ∪̇ FSymnr
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• disjoint sets PSymr of rigid predicate symbols and PSymnr of non-rigid predicate
symbols such that together PSym=PSymr ∪̇ PSymnr

• a typing function α,

such that2

• α(v)∈Tq for all v ∈VSym,
• α( f )∈T∗q ×Tq for all f ∈FSym, and
• α(p)∈T∗q for all p∈PSym.
•�ere is a function symbol (A)∈FSym with α((A))=((⊺),A) for any A∈Tq ,
called the cast to type A.
•�ere is a predicate symbol =∈PSym with α(=)=(⊺, ⊺).
•�ere is a predicate symbol<−A∈PSym with α(<−A)=(⊺) for any A∈T , called the
type predicate for type A.

We use the following notations:

• v∶A for α(v)=A,
• f ∶A1 , . . . ,An→A for α( f )=((A1 , . . . ,An),A), and
• p∶A1 , . . . ,An for α(p)=(A1 , . . . ,An).

A constant symbol is a function symbol c with α(c)=((),A) for some type A. �

Note 2.4 (Symbols contained in the signature). To have a logic useful vor veri�cation,
we expect that the signature always contains certain prede�ned symbols.�ese are typ-
ically operators of common data types. For instance, we require that a JAVA CARD DL
signature contains constants 0, 1, . . . representing the integer numbers, function sym-
bols for arithmetical operations (addition, subtraction, etc.), and the typical ordering
predicates on integers. A full list of prede�ned symbols for JAVA CARD DL is given
in [Beckert et al., 2007].
Furthermore, the KeY system automatically populates the signature with the sym-

bols needed to model program variables in a given program p:

1.�e prede�ned non-rigid array access function symbol [ ℄∶ (⊺,Z→⊺)∈FSymnr .
2. For all local variables and static �eld declarations “A id;” in p:
a) If A is not an array type, then id ∶A∈FSymnr .
b) If A=A′[ ]n is an array type, then id ∶(A′[ ]n)∈FSymnr .

3. For all non-static �eld declarations “A id;” in a class C in p:
a) If A is not an array type, then id∶ (C→A)∈FSymnr .
b) If A=A′[ ]n is an array type, then id∶ (C→A′[ ]n)∈FSymnr . �

In contrast to �rst-order logic, the de�nition of terms and formulas (and also up-
dates) in JAVA CARDDL cannot be done separately, since their de�nitions are mutually
recursive. For example, a formula may contain terms, which may contain updates.
Updates in turn may contain formulas (“quanti�ed updates”). Nevertheless, in order
to improve readability we give separate de�nitions of updates, terms, and formulas in

2 We use the standard notation A∗ to denote the set of (possibly empty) sequences of elements
of A.
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the following. Also, in order to avoid cluttering the notation, we assume that a certain
�xed signature (VSym, FSymr , FSymnr , PSymr , PSymnr , α) w.r.t. a type hierarchy is
given, to which later de�nitions of this chapter refer.

2.3.3 Syntax of JAVA CARD DL Terms

De�nition 2.5 (Terms of JAVA CARD DL). �e system {TermsA}A∈T of sets of terms
of static type A is inductively de�ned as the smallest system of sets such that:

• x ∈TermsA for all variables x∶A∈VSym;
• f (t1 , . . . , tn)∈TermsA for all function symbols f ∶A1 , . . . ,An→A in FSym and
terms ti ∈TermsA′i with A

′
i ⊑A i (1≤ i≤n);

• (if ϕ then t1 else t2)∈TermsA for all ϕ∈Formulas (⇒ Def. 2.8) and all terms
t1 ∈TermsA1 , t2 ∈TermsA2 with A=A1 ⊔ A2;
• {u} t ∈TermsA for all updates u∈Updates (⇒ Def. 2.6) and all terms t ∈TermsA.

In the style of JAVA CARD syntax we o�en write t.f instead of f (t) and a[i℄ instead of[ ℄(a, i).3 �

Terms in JAVA CARD DL play the same role as in �rst-order logic, i.e., they denote
elements of the domain.�e syntactical di�erence to �rst-order logic is the existence
of terms of the form (if ϕ then t1 else t2) (which could be de�ned for �rst-order
logic as well). Informally, if ϕ holds, a conditional term (if ϕ then t1 else t2) denotes
the domain element t1 evaluates to. Otherwise, if ϕ does not hold, t2 is evaluated.
Terms can be pre�xed by updates, which we de�ne next.

2.3.4 Syntax of JAVA CARD DL Updates

We now introduce an additional syntactic category called updates [Beckert, 2001].
Syntactic updates can be seen as a language for describing state transitions. Evaluating{loc ∶=val}ϕ in some state is equivalent to evaluating ϕ in a modi�ed state where loc
evaluates to val.�e di�erence between updates and assignments is that the syntax of
updates is quite restricted, making analysis and simpli�cation of state change e�ects
easier and e�cient. Updates (together with case distinctions) can be seen as a normal
form for programs and, indeed, the idea of our calculus is to stepwise transform a pro-
gram to be veri�ed into a sequence of updates, which are then simpli�ed and applied
to �rst-order formulas.

De�nition 2.6 (Syntactic updates of JAVA CARD DL). �e set Updates of syntactic
updates is inductively de�ned as the smallest set such that:

Function update ( f (t1 , . . . , tn)∶= t)∈Updates if f (t1 , . . . , tn)∈TermsA (⇒ Def. 2.5)
with f ∈FSymnr and t ∈TermsA′ such that A′⊑A;

Sequential update (u1 ;u2)∈Updates if u1 , u2 ∈Updates;
Parallel update (u1 ∣∣u2)∈Updates if u1 , u2 ∈Updates;
3 Note that [ ℄ is a normal function symbol declared in the signature.
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Quanti�ed update (for x; ϕ; u)∈Updates if u∈Updates, x ∈VSym, and ϕ∈Formulas
(⇒ Def. 2.8);

Update application ({u1}u2)∈Updates if u1 , u2 ∈Updates. �

In both sequential and parallel4 updates, a later sub-update overrides an earlier
one.�e di�erence however is that with sequential updates the evaluation of the sec-
ond sub-update is a�ected by the evaluation of the �rst one.�is is not the case for
parallel updates, which are evaluated simultaneously.

Example 2.7. Consider the updates

c ∶= c + 1 ; c ∶= c + 2
and

c ∶= c + 1 ∣∣ c ∶= c + 2
where c is a non-rigid constant. Evaluating these updates in a state satisfying c=0
results in a state satisfying

c=3
in the �rst case resp.

c=2
in the second case. �

2.3.5 Syntax of JAVA CARD DL Formulas

JAVA CARD DL formulas can contain real Java code (sequence of statements). We as-
sume that this sequence is to be understood as part of a program (set of class decla-
rations), not appearing in the formula.�e background program must furthermore
satisfy certain sanity constraints (syntax correctness, etc.), whichwedo not showhere.
�ese constraints do not pose a real restriction.
Now we can de�ne the set of JAVA CARD DL formulas:

De�nition 2.8 (Formulas of JAVA CARD DL). �e set Formulas of JAVA CARD DL for-
mulas is inductively de�ned as the smallest set such that:

• R(t1 , . . . , tn)∈Formulas for all predicate symbols R∶A1 , . . . ,An ∈PSym and terms
ti ∈TermsA′i (⇒ Def. 2.5) with A

′
i ⊑A i (1≤ i≤n),

• true, false∈Formulas,
• ¬ϕ, (ϕ ∨ ψ), (ϕ ∧ ψ), (ϕÐ→ψ), (ϕ←→ψ)∈Formulas for all ϕ,ψ∈Formulas,
• ∀x .ϕ, ∃x .ϕ∈Formulas for all ϕ∈Formulas and all variables x ∈VSym,
• {u}ϕ∈Formulas for all ϕ∈Formulas and u∈Updates (⇒Def. 2.6),
• ⟨p⟩ϕ, [p]ϕ∈Formulas for all ϕ∈Formulas and any legal sequence p of JAVA
CARD DL program statements.

In the following we o�en abbreviate formulas of the form (ϕÐ→ψ) ∧ (¬ϕÐ→ ξ) by
if ϕ then ψ else ξ. �

4 It should be noted that “parallel” updates are not related to concurrency.
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Example 2.9. Given an appropriate type hierarchy and signature, the following are
JAVA CARD DL formulas:

{c ∶=0}(c=0) a formula with an update

({c ∶=0}c)= c a formula containing a term with an update

⟨int i=0; v=i;⟩(v=0) a formula with a program-containing modal opera-
tor (diamond)

[while(true){}]false a formula with a box modal operatorx<yÐ→⟨x++;y++;⟩x<y a diamond formula expressing a pre- and a postcon-
dition �

Note 2.10. In program veri�cation, one is usually interested in proving that the pro-
gram under consideration satis�es some property for all possible input values. Since,
by de�nition, terms (except those declared as static �elds) and in particular logical
variables, i.e., variables from the set VSym, may not occur within modal operators, it
can be a bit tricky to express such properties.

�e canonical way to express the desired property is to bind the program variable
to a quanti�ed logical variable via an update:

∀n.{v ∶=n}(⟨ ArrayList al=new ArrayList();v=al.in(v);⟩(v=n + 1)) .
�

2.4 Semantics of JAVA CARD DL

�e syntax of JAVA CARD DL extends the syntax of �rst-order logic with updates and
modalities. On the semantic level this is re�ected by the fact that, instead of one �rst-
order model, we now have an (in�nite) set of such models representing di�erent pro-
gram states.
Our semantics of JAVA CARD DL is based on so-called Kripke structures, which are

commonly used to de�ne the semantics ofmodal logics. In our case aKripke structure
consists of

• an (in�nite) set of states S.�e states are �rst-order structures, providing inter-
pretations of functions (including program variables) and predicates.

• a program input/output relation ρ �xing the meaning of programs occurring in
modalities. �is relation is dictated by the semantics of our programming lan-
guage.

Analogously to the syntax de�nition, the semantics of JAVA CARD DL updates,
terms, and formulas is mutually recursive. For better readability we still give separate
de�nitions for the semantics of update, terms, and formulas, respectively.
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2.4.1 Models: First-order and Kripke Structures

De�nition 2.11 (First-order structure). A �rst-order structure is a triple (D, δ , I) of
• a domainD,
• a dynamic type function δ ∶D→Td , and
• an interpretation I,

such that, if we de�ne the set of all domain elements that “�t” the type A

DA={d ∈D ∣δ(d)⊑A} ,
it holds that

• DA is non-empty for all A∈Td ,
• for any f ∶A1 , . . . ,An→A∈FSym, I yields a function

I( f )∶DA1 × . . . ×DAn→DA ,

• for any p ∶A1 , . . . ,An ∈PSym, I yields a subset
I(p)⊆DA1 ×⋯×DAn ,

• for type casts, I((A))(x)=x if δ(x)⊑A, otherwise I((A))(x) is an arbitrary but
�xed5 element ofDA, and
• for equality, I(=)={(d , d)∣d ∈D},
• for type predicates, I(<−A)=DA. �

First-order structures are not quite su�cient to give a meaning to an arbitrary
�rst-order term or formula: they say nothing about the variables. For this, we intro-
duce the notion of a variable assignment.

De�nition 2.12 (Variable assignment).Given a �rst-order structure (D, δ , I), a vari-
able assignment is a function β∶VSym→D, such that

β(x)∈DA for all x∶A∈VSym .

We also de�ne themodi�cation βdx of a variable assignment β for any variable x∶A and
any domain element d ∈DA by:

βdx (y)=
⎧⎪⎪⎨⎪⎪⎩
d if y=x
β(y) otherwise. �

5�e chosen elementmay be di�erent for di�erent arguments, i.e., if x≠ y, then I((A))(x)≠
I((A))(y) is allowed.
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De�nition 2.13 (JAVA CARD DL Kripke structure). A JAVA CARD DL Kripke struc-
tureK is a pair (S, ρ). S is the set of �rst-order structures over the given signature Σ,
which serve as program states. ρ is the transition relation on S, interpreting programs:
ρ(p)⊆S2 .�e program relation ρ is, for all states s1 , s2 ∈S and any legal sequence p of
JAVA CARD DL program statements, de�ned by:

(s1 , s2)∈ρ(p)
i�

p started in s1 in a static context terminates normally in s2
according to the JAVA language speci�cation [Gosling et al., 2000].

Smust also satisfy the following side conditions:

1. Rigid function and predicate symbols have a �xed interpretation for all states,
while the interpretation of non-rigid symbols may di�er from state to state.

2.�e dynamic type function δ is the same for all states.
3. All states have the same domain D (“constant domain assumption”). We refer
toD as the domain ofK.

4.�e domainDmust satisfy certain sanity properties not detailed here. In partic-
ular, the domain contains exactly the two elements tt and � with dynamic type
boolean and null as the only element with dynamic type Null. Moreover, we re-
quire that for each dynamic subtype A of type Object (except type Null) there
is a countably in�nite number of domain elements representing the JAVA CARD
objects of dynamic type A.

5. We demand that the set S of states of any Kripke structure consists of all �rst-
order structures satisfying the above restrictions.

Furthermore, all JAVA CARD DL Kripke structure must interpret certain function and
predicate symbols that we have distinguished as prede�ned (⇒ Note 2.4) in a prede-
�ned way.6 �

2.4.2 Semantics of JAVA CARD DL Updates

Similar to the �rst-order case we inductively de�ne a valuation function vals assign-
ing meaning to updates, terms, and formulas. Since non-rigid function and predicate
symbols can have di�erent meanings in di�erent states, the valuation function is pa-
rameterized with a JAVA CARD DL state, i.e., for each state s in S, there is a separate
valuation function.

�e intuitive meaning of updates is that the term or formula following the update
is to be evaluated not in the current state but in the state described by the update. To
be more precise, updates do not describe a state completely, but merely the di�erence
between the current state and the target state. As we see later this is similar to the

6�e semantics of each prede�ned symbol can be constrained completely or only partially.
Such constraints are typically expressed as axioms, together with symbol declaration. An ex-
ample of a partially constrained prede�ned function in JAVACARDDL is division on integers.
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semantics of programs contained in modal operators and indeed updates are used to
describe the e�ect of programs.
In parallel updates u1 ∣∣u2 (as well as in quanti�ed updates) clashes can occur,

where u1 and u2 simultaneously modify a non-rigid function f for the same argu-
ments in an inconsistent way, i.e., by assigning it di�erent values. To handle this prob-
lem, we use a last-win semantics, i.e., the update that syntactically occurs last dom-
inates earlier ones. In the more general situation of quanti�ed (unbounded parallel)
updates for x; ϕ; u, we assume that a �xed well-ordering ⪯ on the universe D ex-
ists (i.e., a total ordering such that every non-empty subset Dsub ⊆D has a least ele-
ment min⪯(Dsub)).�e parallel application of unbounded sets of updates can then
be well-ordered as well, and clashes are resolved by giving precedence to the update
with the smallest value of x.
As every set can bewell-ordered [Zermelo, 1904], this does not restrict the range of

possible domains.�e particular order imposed on the domain of a Kripke structure
is a parameter that can be chosen freely depending on the problem.�e KeY system
implements a certain “natural” order, which we do not describe here (but see [Beckert
et al., 2007]).

�e semantics of applying an update to a given JAVA CARD DL state (D, δ , I) is
de�ned as a new state (D, δ , I′) that di�ers only in the interpretation of the updated
function, and this only for the arguments speci�ed in the update. But before we give
the exact de�nition, we introduce semantic updates and discuss their consistency.

De�nition 2.14 (Semantic update). A semantic update is a triple ( f , (d1 , . . . , dn), d)
such that

• f ∶A1 , . . . ,An→A∈FSymnr ,
• d i ∈DA i (1≤ i≤n), and
• d ∈DA . �

Since updates in general modify more than one location (a location is a pair( f , (d1 , . . . , dn))), we de�ne sets of consistent semantic updates.
De�nition 2.15 (Consistent semantic updates). A set CU of semantic updates is
called consistent if for all ( f , (d1 , . . . , dn), d), ( f ′, (d′1 , . . . , d′m), d′)∈CU ,

d =d′ if f = f ′ , n=m, and d i =d′i (1≤ i≤n) .
Let CU denote the set of consistent semantic updates. �

As we see in Def. 2.17, a syntactic update describes the modi�cation of a state s
as a set CU of consistent semantic updates. In order to obtain the state in which the
terms, formulas, or updates following an update u are evaluated, CU is applied to s
yielding a state s′.

De�nition 2.16 (Application of semantic updates). Let s=(D, δ , I) be a �rst-order
structure. For any set CU ∈CU of consistent semantics updates, the application result
CU(s) is de�ned as the structure (D′ , δ′, I′) with
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D′ = D

δ′ = δ

I′( f )(d1 , . . . , dn) =
⎧⎪⎪⎨⎪⎪⎩
d if ( f , (d1 , . . . , dn), d)∈CU
I( f )(d1 , . . . , dn) otherwise

for all f ∶A1 , . . . ,An→A∈FSymnr and d i ∈DA i (1≤ i≤n). �

Intuitively, a set CU of consistent semantic updates modi�es the interpretation
of s for the locations that are contained in CU .�e consistency condition in Def. 2.15
guarantees that the interpretation function I′ in Def. 2.16 is well-de�ned.

De�nition 2.17 (Semantics of JAVA CARD DL updates). Let K=(S, ρ) be a Kripke
structure of JAVA CARD DL with the domain ordered by a total order ≺ (explained
above), and let β be a variable assignment.
For every state s=(D, δ , I)∈S, the valuation function vals ∶Updates→CU for up-

dates is inductively de�ned by

• vals ,β( f (t1 , . . . , tn)∶= t)={( f , (d1 , . . . , dn), d)} where
d i = vals ,β(ti) (1≤ i≤n)
d = vals ,β(t) ,

• vals ,β(u1 ;u2)=(U1 ∪U2) ∖ C where

U1 = vals ,β(u1)
U2 = valS′ ,β(u2) with S′=vals ,β(u1)(S)
C = {( f , (d1 , . . . , dn), d)∣ ( f , (d1 , . . . , dn), d)∈U1 and( f , (d1 , . . . , dn), d′)∈U2 for some d′ /=d} ,

• vals ,β(u1 ∣∣u2)=(U1 ∪U2) ∖ C where

U1 = vals ,β(u1)
U2 = vals ,β(u2)
C = {( f , (d1 , . . . , dn), d)∣ ( f , (d1 , . . . , dn), d)∈U1 and( f , (d1 , . . . , dn), d′)∈U2 for some d′ /=d} ,

• vals ,β(for x; ϕ; u)=U where
U ={( f , (d1, . . . , dn), d)∣ (( f , (d1 , . . . , dn), d), a)∈dom for some a ∈DA

and b /≺a for all (( f , (d1 , . . . , dn), d′), b)∈dom}
with dom=⋃

a∈DA

s ,βa
x⊧ϕ

(vals ,βa
x
(u) × {a}), and x ∶A,

• vals ,β({u1}u2)=vals′ ,β(u2) with s′=vals ,β(u1)(s).
For an update u without free variables we simply write vals(u) since vals ,β(u) is in-
dependent of β. �
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Example 2.18. Consider the quanti�ed update

for x; x =0 ∨ x =1; h(x)∶=0 .
It updates two di�erent locations, so there is no clash.�e result of applying this up-
date is a state satisfying h(0)=0 and h(1)=0.
Now consider the update

for x; x =0 ∨ x =1; h(0)∶=5 − x .

It attempts to simultaneously assign the values 5 and 4 to the same location h(0). Let’s
assume that x ranges over the positive integers, which allows us to choose the natural
“less than or equal” ordering relation ≤ on the relevant part of the domain. Since 0≤1,
we give preference to the update binding x to zero, and the result of applying the
quanti�ed update is a state satisfying h(0)=5. �

2.4.3 Semantics of JAVA CARD DL Terms

�e valuation function for JAVA CARD DL terms is de�ned analogously to the one for
�rst-order terms, though depending on the JAVA CARD DL state.

De�nition 2.19 (Semantics of JAVACARDDLterms).LetK=(S, ρ) be aKripke struc-
ture of JAVA CARD DL, and let β be a variable assignment.
For every state s=(D, δ , I)∈S, the valuation function vals for terms is inductively

de�ned by:

vals ,β(x) = β(x) for variables x

vals ,β( f (t1 , . . . , tn)) = I( f )(vals ,β(t1), . . . , vals ,β(tn))
vals ,β(if ϕ then t1 else t2)) =

⎧⎪⎪⎨⎪⎪⎩
vals ,β(t1) if s, β⊧ϕ

vals ,β(t2) if s, β /⊧ϕ
vals ,β({u}(t)) = vals1 ,β(t) with s1=vals ,β(u)(s)

Since vals ,β(t) does not depend on β if t is ground, we write vals(t) in that case. �

�e function and predicate symbols of a signature are divided into disjoint sets of
rigid and non-rigid function and predicate symbols, respectively. By Def. 2.13, rigid
symbols have the samemeaning in all states of a given Kripke structure.�e following
syntactic criterion continues the notion of rigidness from function symbols to terms.

De�nition 2.20. A JAVA CARD DL term t is rigid

• if t=x and x ∈VSym,
• if t= f (t1 , . . . , tn), f ∈FSymr and the sub-terms ti are rigid (1≤ i≤n),
• if t={u}(s) and s is rigid,
• if t=(if ϕ then t1 else t2) and the formula ϕ is rigid (Def. 2.22) and the sub-
terms t1 , t2 are rigid. �

Rigid terms have the same meaning in all JAVA CARDDL states, whereas the mean-
ing of non-rigid terms may di�er from state to state.
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2.4.4 Semantics of JAVA CARD DL Formulas

De�nition 2.21 (Semantics of JAVA CARD DL formulas). LetK=(S, ρ) be a Kripke
structure of JAVA CARD DL, and let β be a variable assignment.
For every state s=(D, δ , I)∈S the validity relation ⊧ for JAVA CARD DL formulas

is inductively de�ned by:

• s, β⊧R(t1, . . . , tn) i� (vals ,β(t1), . . . , vals ,β(tn))∈I(R)
• s, β⊧ true
• s, β /⊧false
• s, β⊧¬ϕ i� s, β /⊧ϕ
• s, β⊧(ϕ ∧ ψ) i� s, β⊧ϕ and s, β⊧ψ
• s, β⊧(ϕ ∨ ψ) i� s, β⊧ϕ or s, β⊧ψ (or both)
• s, β⊧(ϕÐ→ψ) i� s, β /⊧ϕ or s, β⊧ψ (or both)
• s, β⊧∀x .ϕ i� s, βdx ⊧ϕ for every d ∈DA (if x ∶A)
• s, β⊧∃x .ϕ i� s, βdx ⊧ϕ for some d ∈DA (if x ∶A)
• s, β⊧{u}(ϕ) i� s1 , β⊧ϕ with s1=vals ,β(u)(s)
• s, β⊧⟨p⟩ϕ i� there exists some state s′ ∈S such that (s, s′)∈ρ(p) and s′, β⊧ϕ
• s, β⊧[p]ϕ i� s′, β⊧ϕ for every state s′ ∈S with (s, s′)∈ρ(p)

We write S⊧ϕ for a closed formula ϕ, since β is then irrelevant. �

Similar to rigidness of terms, we now de�ne rigidness of formulas.

De�nition 2.22. A JAVA CARD DL formula ϕ is rigid

• if ϕ= p(t1 , . . . , tn), p∈PSymr and the terms ti are rigid (1≤ i≤n),
• if ϕ=true or ϕ= false,
• if ϕ=¬ψ and ψ is rigid,
• ϕ=(ψ1 ∨ ψ2), ϕ=(ψ1 ∧ ψ2), or ϕ=(ψ1Ð→ψ2), and ψ1 ,ψ2 are rigid,
• if ϕ=∀x .ψ or ϕ=∃x .ψ, and ψ is rigid,
• ϕ={u}ψ and ψ is rigid. �

Note 2.23. A formula ⟨p⟩ψ or [p]ψ isnot rigid, even ifψ is rigid, since the truth value of
such formulas depends, e.g., on the termination behavior of the program statements p
in the modal operator. Whether a program terminates or not in general depends on
the state the program is started in. �

Rigid formulas—in contrast to non-rigid formulas—have the same meaning in all
JAVA CARD DL states.
Finally, we de�ne what it means for a formula to be valid or satis�able.

De�nition 2.24 (Validity). We say that a Kripke structureK=(S, ρ) is a model of a
formula ϕ, or that ϕ is K-valid, i� s, β⊧ϕ for all s ∈S and all variable assignments β
(i.e., when ϕ is true in all states).
A formula ϕ is valid if all Kripke structures are a model of ϕ. �

Example 2.25.We now check the formulas from Example 2.9 for validity. We assume
that  is an integer non-rigid constant in the signature.
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⊧{c ∶=0}(c=0) since in the state inwhich c=0 is evaluated, c is indeed 0
(due to the update).

/⊧({c ∶=0} c)= c since ({c ∶=0}c) evaluates to 0 in any state but there are
states in which c (the right side) is di�erent from 0.

⊧⟨int i=0; v=i;⟩v=0 since the program always terminates in state with v=0.
⊧[while(true){}]false since false has to hold if the program terminates, but

the program never terminates.

/⊧x<yÐ→⟨x++;y++;⟩x<y sinceymay su�er integer over�owupon increment, but
not x.�e fomula would have been valid assuming a
mathematical integer semantics. KeY actually o�ers the
possibility to work with di�erent integer semantics.

�

2.4.5 JAVA CARD-reachable States

Not all states of a JAVA CARD DL Kripke structure can actually occur during an execu-
tion of a JAVA CARD program. Indeed, a state is (only) JAVA CARD-reachable if it satis�es
the following conditions:

1. A �nite number of objects are created.7

2. Reference type attributes of created objects are either null or point to some other
created object. Similarly, all entries of created reference-type arrays are either null
or point to some created object.

3. For any array a with dynamic type δ(a)=A[], the dynamic type of the ar-
ray entries is a subtype of A (an assignment violating this condition throws anArrayStoreExeption in JAVA).

4. Initialized classes are not erroneous and other conditions related to class initial-
ization.

5. For multi-threaded programs, program counters of threads and lock states must
be consistent with locking operations in the program.

�us, there are formulas that are true in all JAVA CARD-reachable states but that are
not valid in JAVA CARD DL.�is problem can be overcome by adding a special predi-
cate inReachableState (formalizing the above conditions) to the invariants of the pro-
gram to be veri�ed.�en, states that are not reachable by any JAVA CARD program are
excluded from consideration.
When a correctness proof is started, the KeY system automatically adds the predi-

cate inReachableState to the precondition of the speci�cation. In the majority of cases,
proofs can be completedwithout considering inReachableState .�ere are however sit-
uations that require the use of inReachableState. To deal with such situations, the KeY
calculus provides rules that allow the user to extract parts of inReachableState that are
necessary to close the proof.

7 In JAVA CARD DL, objects are represented by domain elements, and the domain is de�ned to
be constant. Whether an object is created or not is indicated by a ghost Boolean attribute.
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2.5 �e Calculus for JAVA CARD DL

2.5.1 Sequents, Rules, and Proofs

�e KeY system’s calculus for JAVA CARDDL is aGentzen-style [Gentzen, 1935] sequent
calculus. A calculus is formally a set of rules. Rules are used to derive sequents from
other sequents.

De�nition 2.26 (Sequents). A sequent is of the form ΓÔ⇒∆, where Γ, ∆ are sets of
closed JAVA CARD DL formulas.

�e le�-hand side Γ is called antecedent and the right-hand side ∆ is called succe-
dent of the sequent.

�e semantics of a sequent

ϕ1 , . . . , ϕmÔ⇒ψ1 , . . . ,ψn

is the same as that of the formula

(ϕ1 ∧ . . . ∧ ϕm)Ð→(ψ1 ∨ . . . ∨ ψm) .
�

De�nition 2.27 (Rule, Derivability). A rule R is a binary relation between (a) the
set of all tuples of sequents and (b) the set of all sequents.
If R(⟨P1, . . . , Pk⟩, C) (k≥0), then the conclusion C is derivable from the premisses

P1 , . . . , Pk using rule R.
�e set of sequents that are derivable is the smallest set such that: If there is a rule

in the calculus that allows to derive a sequent S from premisses that are all derivable,
then S is derivable in C. �

Intuitively, a proof for a sequent S is a derivation of S written as a tree with root S,
where the sequent in each node is derivable from the sequents in its child nodes.

De�nition 2.28 (Proof tree, Proof).A proof tree is a �nite tree, such that:

• each node of the tree is annotated with a sequent
• each inner node of the tree is additionally annotated with one of the calculus rules
that have at least one premiss.�e rule relates the node’s sequent to the sequents
of its descendants. In particular, the number of node’s descendants is the same as
the number of premisses of the rule.
• a leaf node may or may not be annotated with a rule. If it is, it is one of the rules
that have no premisses, also known as closing rules.

A proof tree for a formula ϕ is a proof tree where the root sequent is annotated
withÔ⇒ϕ.
A branch of a proof tree is a path from the root to one of the leaves. A branch is

closed if the leaf is annotated with one of the closing rules. A proof tree is closed if all
its branches are closed, i.e., every leaf is annotated with a closing rule.
A closed proof tree (for a formula ϕ) is also called a proof (for ϕ). �
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2.5.2 Soundness and Completeness of the Calculus

Soundness

�e most important property of the JAVA CARD DL calculus is soundness, i.e., only
valid formulas are derivable.

Proposition 2.29 (Soundness). If a sequent ΓÔ⇒∆ is derivable in the JAVA CARD DL
calculus (Def. 2.27), then it is valid, i.e., the formula ⋀ ΓÐ→⋁∆ is logically valid
(Def. 2.24). �

It is easy to show that the whole calculus is sound if and only if all its rules are sound.
�at is, if the premisses of any rule application are valid sequents, then the conclusion
is valid as well. Given the soundness of the existing core rules of the JAVA CARD DL
calculus, the user can add new rules, whose soundness must then be proven w.r.t.
the existing rules. A bigger perspective on the issue of calculus soundness is given in
Chapter 9.

Relative Completeness

Ideally, one would like a program veri�cation calculus to be able to prove all state-
ments about programs that are true, which means that all valid sequents should be
derivable. �at, however, is impossible because JAVA CARD DL includes �rst-order
arithmetic, which is already inherently incomplete as established by Gödel’s Incom-
pleteness �eorem [Gödel, 1931]. Another, equivalent, argument is that a complete
calculus for JAVA CARD DL would yield a decision procedure for the Halting Problem,
which is well-known to be undecidable.�us, a logic like JAVA CARD DL cannot ever
have a calculus that is both sound and complete.
Still, it is possible to de�ne a notion of relative completeness [Cook, 1978], which

intuitively states that the calculus is complete “up to” the inherent incompleteness in
its �rst-order part. A relatively complete calculus contains all the rules that are neces-
sary to prove valid program properties. It only may fail to prove such valid formulas
whose proof would require the derivation of a non-provable �rst-order property (be-
ing purely �rst-order, its provability would be independent of the program part of the
calculus).

Proposition 2.30 (Relative Completeness). If a sequent ΓÔ⇒∆ is valid, i.e., the for-
mula⋀ ΓÐ→⋁∆ is logically valid (Def. 2.24), then there is a �nite set ΓFOL of logically
valid �rst-order formulas such that the sequent

ΓFOL , ΓÔ⇒∆

is derivable in the JAVA CARD DL calculus. �

�e standard technique for proving that a program veri�cation calculus is rela-
tively complete [Harel, 1979] hinges on a central lemma expressing that for all JAVA
CARD DL formulas there is an equivalent purely �rst-order formula. A completeness
proof for the object-oriented dynamic logic ODL [Beckert and Platzer, 2006b], which
captures the essence of JAVA CARD DL, is given by Platzer [2004a].
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2.5.3 Rule Schemata and Schema Variables

To attain a �nite rule description we use rule schemata, i.e., rules containing schema
variables. Schema variables represent concrete syntactical elements (e.g., terms, for-
mulas or programs).

De�nition 2.31 (Rule schema).A rule schema is of the form

P1 P2 ⋯ Pk

C
(k≥0)

where P1 , . . . , Pk and C are schematic sequents, i.e., sequents containing schema vari-
ables. �

A rule schema P1⋯Pk /C represents a rule R if the following equivalence holds: a
sequent C∗ is derivable frompremisses P∗1 , . . . , P

∗
k i� P

∗
1 ⋯P∗k /C∗ is an instance of the

rule schema. Schema instances are constructed by instantiating the schema variables
with syntactical constructs (terms, formulas, etc.) which are compliant to the kinds
of the schema variables. One rule schema represents in�nitely many rules, namely, its
instances.

�ere are many cases, where a basic rule schema is not su�cient for describing
a rule. Even if its general form adheres to a pattern that is describable in a schema,
there may be details in a rule that cannot be expressed schematically. For example,
in the rules for handling existential quanti�ers, there is the restriction that (Skolem)
constants introduced by a rule application must not already occur in the sequent.
When a rule is described schematically, such constraints are added as a note to the
schema.
All the rules of our calculus perform one (or more) of the following actions:

• A sequent is recognised as an axiom, and the corresponding proof branch is
closed.

• A formula in a sequent is modi�ed. A single formula (in the conclusion of the
rule) is chosen to be in focus. It can bemodi�ed or deleted from the sequent. Note
that we do not allow more than one formula to be modi�ed by a rule application.

• Formulas are added to a sequent.�e number of formulas that are added is �nite
and is the same for all possible applications of the same rule schema.

• �e proof branches.�e number of new branches is the same for all possible ap-
plications of the same rule schema.

Moreover, whether a rule is applicable and what the result of the application is, de-
pends on the presence of certain formulas in the conclusion.

�e above list of possible actions excludes, for example, rules performing changes
on all formulas in a sequent or that delete all formulas with a certain property.

�us, all our rules preserve the “context” in a sequent, i.e., the formulas that are
not in the focus of the rule remain unchanged.�erefore, we can simplify the nota-
tion of rule schemata, and leave this context out. Similarly, an update that is common
to all premisses can be le� out (this is formalized in Def. 2.32). Intuitively, if a rule
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“ϕÔ⇒ψ /ϕ′Ô⇒ψ′” is correct, then ϕ′Ô⇒ψ′ can be derived from ϕÔ⇒ψ in all pos-
sible contexts. In particular, the rule then is correct in a context described by Γ, ∆,U,
i.e., in all states s for which there is a state s0 such that ΓÔ⇒∆ is true in s0 and s is
reached from s0 by executingU.�erefore, “Γ, UϕÔ⇒Uψ ∆/ΓUϕ′Ô⇒Uψ′ , ∆” is
a correct instance of “ϕÔ⇒ψ /ϕ′Ô⇒ψ′”, and Γ, ∆,U do not have to be included in
the schema. Instead we allow them to be added during application. Note, however,
that the same Γ, ∆,U have to be added to all premisses of a rule schema.

�ere are also a few rules (mostly invariant rules of di�erent �avors) where the
context cannot be omitted. Such rules are indicated with the (∗) symbol.
De�nition 2.32. If

ϕ11 , . . . , ϕ
1
m1
Ô⇒ψ11 , . . . ,ψ

1
n1⋮

ϕk
1 , . . . , ϕ

k
mk
Ô⇒ψk

1 , . . . ,ψ
k
nk

ϕ1 , . . . , ϕmÔ⇒ψ1 , . . . ,ψn

is an instance of a rule schema, then

Γ, Uϕ11 , . . . ,Uϕ1m1Ô⇒Uψ11 , . . . ,Uψ1n1 , ∆⋮
Γ, Uϕk

1 , . . . ,Uϕk
mk
Ô⇒Uψk

1 , . . . ,Uψk
nk
, ∆

Γ, Uϕ1 , . . . ,UϕmÔ⇒Uψ1 , . . . ,Uψn , ∆

is an inference rule of our DL calculus, whereU is an arbitrary syntactic update (in-
cluding the empty update), and Γ, ∆ are �nite sets of context formulas.
If, however, the symbol (∗) is added to the rule schema, the context Γ, ∆,Umust

be empty, i.e., only instances of the schema itself are inference rules. �

Example 2.33. Consider, for example, the rule impRight:

impRight
ϕÔ⇒ψ

Ô⇒ϕÐ→ψ

When this schema is instantiated, a context consisting of Γ, ∆ and an updateU can be
added, and the schema variables ϕ,ψ can be instantiated with formulas that are not
purely �rst-order. For example, the following is an instance of impRight:

x =1, {x ∶=0}(x = y)Ô⇒{x ∶=0}⟨m();⟩(y=0)
x =1Ô⇒{x ∶=0}(x = yÐ→⟨m();⟩(y=0))

where Γ=(x =1), ∆ is empty, and the context updateU is {x ∶=0}. �

Schema variables and their kinds

�e schema variables used in rule schemata are all assigned a kind that determines
which class of concrete syntactic elements they represent. In the following sections, we
o�en do not explicitly mention the kinds of schema variables but use the name of the
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variables to indicate their kind. Table 2.1 gives the correspondence between names
of schema variables that represent pieces of JAVA code and their kinds. In addition,
we use the schema variables ϕ,ψ to represent formulas and Γ, ∆ to represent sets of
formulas.

Table 2.1. Correspondence between names of schema variables and their kinds
π non-active pre�x of JAVA code (Sect. 2.5.4)
ω “rest” of JAVA code a�er the active statement (Sect. 2.5.4)
p, q JAVA code (arbitrary sequence of statements)
e arbitrary JAVA expression
se simple expression, i.e., any expression whose evaluation, a priori, does not

have any side-e�ects. It is de�ned as one of the following:
(a) a local variable
(b) this.a, i.e., an access to an instance attribute via the target expressionthis (or, equivalently, no target expression)
(c) an access to a static attribute of the form t.a, where the target expres-
sion t is a type name or a simple expression

(d) a literal
(e) a compile-time constant
(f) an instaneof expression with a simple expression as the �rst argu-
ment

(g) a this reference
An access to an instance attribute o.a is not considered simple because aNullPointerExeption may be thrown

nse non-simple expression, i.e., any expression that is not simple (see above)
lhs simple expression that can appear on the le�-hand-side of an assignment.

�is amounts to the items (a)–(c) from above
v, v0 , . . . local program variables (i.e., non-rigid constants)
a attribute
l label
args argument tuple, i.e., a tuple of expressions
cs sequence of catch clauses
mname name of a method
T type expression
C name of a class or interface

If a schema variable T representing a type expression is indexed with the name of
another schema variable, say e, then it only matches with the JAVA type of the expres-
sion with which e is instantiated. For example, “Tw v = w” matches the JAVA code
“int i = j” if and only of the type of j is int (and not, e.g., byte).
2.5.4 �e Active Statement in a Modality

�e rules of our calculus operate on the �rst active statement p in amodality ⟨πpω⟩ or[πpω].�e non-active pre�x π consists of an arbitrary sequence of opening braces “{”,
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labels, beginnings “try{” of try-ath-finally blocks, and beginnings “method-frame(. . .){” of method invocation blocks.�e pre�x is needed to keep track of the
blocks that the (�rst) active command is part of, such that the abruptly terminating
statements throw, return, break, and ontinue can be handled appropriately.

�e post�x ω denotes the “rest” of the program, i.e., everything except the non-
active pre�x and the part of the program the rule operates on (in particular, ω contains
closing braces corresponding to the opening braces in π). For example, if a rule is
applied to the following JAVA block operating on its �rst active command “i=0;”, then
the non-active pre�x π and the “rest” ω are the indicated parts of the block:l:{try{´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

π

i=0; j=0; } finally{ k=0; }}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ω

In versions of dynamic logic for simple programming languages, where nopre�xes
are needed, any formula of the form ⟨pq⟩ϕ can be replaced by ⟨p⟩⟨q⟩ϕ. In our calculus,
decomposing of ⟨πpqω⟩ϕ into ⟨πp⟩⟨qω⟩ϕ is not possible (unless the pre�x π is empty)
because πp is not a valid program; and the formula ⟨πpω⟩⟨πqω⟩ϕ cannot be used
either because its semantics is in general di�erent from that of ⟨πpqω⟩ϕ.
2.5.5 �e Essence of Symbolic Execution

Our calculus works by reducing the question of a formula’s validity to the question of
the validity of several simpler formulas. Since JAVA CARD DL formulas contain pro-
grams, the JAVA CARD DL calculus has rules that reduce the meaning of programs to
the meaning of simpler programs. For this reduction we employ the technique of sym-
bolic execution [King, 1976]. Symbolic execution in JAVA CARD DL resembles playing
an accordion: you make the program longer (though simpler) before you can make it
shorter.
For example, to �nd out whether the sequent

Ô⇒⟨o.next.prev=o;⟩o.next.prev=o
is valid, we symbolically execute the JAVA code in the diamond modality. At �rst, the
calculus rules transform it into an equivalent but longer (albeit in a sense simpler)
sequence of statements:

Ô⇒⟨ListEl v; v=o.next; v.prev=o;⟩o.next.prev=o .
�is way, we have reduced reasoning about the complex expression o.next.prev=o
to reasoning about several simpler expressions. We call this process unfolding, and it
works by introducing fresh local variables to store intermediate computation results.
Now, when analyzing the �rst of the simpler assignments (a�er removing the vari-

able declaration), one has to consider the possibility that evaluating the expressiono.nextmay produce a side e�ect if o is null (in that case an exception is thrown).
However, it is not possible to unfold o.next any further. Something else has to be
done, namely a case distinction.�is results in the following two new goals:
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�us, we can state the essence of symbolic execution: the JAVA code in the formulas

is step-wise unfolded and replaced by case distinctions and syntactic updates.
Of course, it is not a coincidence that these two ingredients (case distinctions and

updates) correspond to two of the three basic programming constructs.�e third ba-
sic construct are loops. �ese cannot in general be treated by symbolic execution,
since using symbolic values (as opposed to concrete values) the number of loop it-
erations is unbounded. Symbolically executing a loop, which is called “unwinding”,
is useful and even necessary, but unwinding cannot eliminate a loop in the general
case. To treat arbitrary loops, one needs to use induction (⇒ Sect. 2.6.4) or loop in-
variants (⇒ Sect. 2.8). Also, certain kinds of loops can be translated into quanti�ed
updates [Gedell and Hähnle, 2006].
Method invocations can be symbolically executed, replacing a method call by the

method’s implementation. However, it is o�en useful to instead use a method’s con-
tract so that it is only symbolically executed once—during the proof that the method
satis�es its contract—instead of executing it for each invocation.

2.5.6 Components of the Calculus

Our JAVA CARD DL calculus has �ve major components, which are described in detail
in the following sections. Since the calculus consists of hundreds of rules, however,
we cannot list them all in this book. Instead, we give typical examples for the di�erent
rule types and classes (a complete list can be found on the KeY project website).
In particular, we usually only give the rule versions for the diamond modality ⟨⋅⟩.

�e rules for box modality [⋅] are mostly the same—notable exceptions are the rules
for handling loops (Sect. 2.8) and some of the rules for handling abrupt termination
(Sect. 2.7.6).

�e �ve components of the JAVA CARD DL calculus are:

1. Non-program rules, i.e., rules that are not related to particular program con-
structs.�is includes �rst-order rules, rules for data types (in particular the in-
tegers), rules for modalities (e.g., rules for empty modalities), and the induction
rule.

2. Rules that work towards reducing/simplifying the program and replacing it by a
combination of case distinction (proof branches) and sequences of updates.�ese
always (and only) apply to the �rst active statement. A “simpler” programmay be
syntactically longer; it is simpler in the sense that expressions are not as deeply
nested or have less side-e�ects.

3. An invariant rule that handles loops for which no �xed upper bound on the num-
ber of iterations exists. (Another technique for doing this is induction, which is
part of Component 1.)

4. Rules that replace a method invocation by the method’s contract.
5. Update simpli�cation.
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Component 2 is the core for handling JAVA CARD programs occurring in formulas.
�ese rules can be applied automatically, and they can do everything needed for han-
dling programs except evaluating loops and using method speci�cations.

�e overall strategy is to use the rules in Component 2, interspersed with applica-
tions of rules in Component 3 and Component 4 for handling loops resp. methods, to
step-wise eliminate the program and replace it by updates and case distinctions. A�er
each step, Component 5 is used to simplify/eliminate updates.�e �nal result of this
process are sequents containing pure �rst-order formulas.�ese are then handled by
Component 1.

�e symbolic execution process is for the most part done automatically by the
KeY system. Of course, this presupposes that loop invariants are given. In addition,
the user can give the prover modularization hints such as method contracts, lemmas,
etc. User interaction may also be necessary when solving the �rst-order problem that
is le� at the end of symbolic execution (e.g., quanti�er instantiation). At this stage, the
KeY system can request assistance from external decision procedures for �rst-order
logic and basic data type theories.

2.6 Calculus Component 1: Non-program Rules

2.6.1 First-order Rules

�is component includes:

• Standard �rst-order rules (⇒ Fig. 2.2)
• Almost standard equality rules (which we do not show). As we deal with a modal
logic, an equality t1= t2 may only be used for rewriting if
– both t1 and t2 are rigid terms (Def. 2.20), or
– the equality t1= t2 and the occurrence of ti that is being replaced are (a) not
in the scope of two di�erent program modalities and (b-1) not in the scope
of two di�erent updates or (b-2) in the scope of two updates with the same
e�ect.

Equality handling is further complicated by subtyping
• Rules for reasoning about type casts and type predicates (which we do not show)
• Standard arithmetical rules.

2.6.2 �e Cut Rule and Lemma Introduction

�e cut rule

cut
Ô⇒ϕ ϕÔ⇒

Ô⇒

allows to introduce a lemma ϕ, which is an arbitrary JAVA CARD DL formula. �e
lemma occurs in the succedent of the le� premiss (where, intuitively speaking, the
lemma has to be proved) and in the antecedent of the right premiss (where, intuitively
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andLeft
ϕ,ψÔ⇒

ϕ ∧ ψÔ⇒
andRight

Ô⇒ϕ Ô⇒ψ

Ô⇒ϕ ∧ ψ

orRight
Ô⇒ϕ,ψ

Ô⇒ϕ ∨ ψ
orLeft

ϕÔ⇒ ψÔ⇒

ϕ ∨ ψÔ⇒

impRight
ϕÔ⇒ψ

Ô⇒ϕÐ→ψ
impLeft

Ô⇒ϕ ψÔ⇒

ϕÐ→ψÔ⇒

notLeft
Ô⇒ϕ

¬ϕÔ⇒
notRight

ϕÔ⇒

Ô⇒¬ϕ

allRight
Ô⇒[x/c](ϕ)
Ô⇒∀x.ϕ

with c ∶→A a new constant, if x∶A

allLeft
∀x.ϕ, [x/t](ϕ)Ô⇒

∀x.ϕÔ⇒
with t ∈TrmA′ rigid ground, A

′⊑A, if x∶A

exLeft
[x/c](ϕ)Ô⇒
∃x.ϕÔ⇒

with c ∶→A a new constant, if x∶A

exRight
Ô⇒∃x.ϕ, [x/t](ϕ)

Ô⇒∃x.ϕ
with t ∈TrmA′ rigid ground, A

′⊑A, if x∶A

close
ϕÔ⇒ϕ

closeFalse
falseÔ⇒

closeTrue
Ô⇒ true

Figure 2.2. Classical �rst-order rules

speaking, the lemma can be used). One can also view the cut rule as a case distinction
on whether ϕ is true or not as the right premiss is equivalent toÔ⇒¬ϕ.
Using the cut rule in the right way can greatly reduce the length of proofs.

However, since the cut formula ϕ is arbitrary, the cut rule is not analytic and non-
deterministic.�at is the reason why it is not included in the calculus for �rst-order
logic (it is not needed for completeness). In the KeY system it is only applied interac-
tively when the user can choose a useful cut formula based on their knowledge and
intuition.

�e cut rule introduces a lemma ϕ that is proved in the particular context in which
it is introduced.�us, it can only be used in that context. It can, for example, not be
used in the context of an update U since ϕ does not imply {U}ϕ. Another way to
introduce a lemma is to de�ne a new calculus rule and prove its soundness.�at way,
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a lemma ϕ can be introduced that can be used in any context (provided that ϕ is shown
to be logically valid).

2.6.3 Non-program Rules for Modalities

�e JAVA CARDDL calculus contains some rules that apply to modal operators and are,
thus, not �rst-order rules but that are neither related to a particular JAVA construct.
�e most important representatives of this rule class are the following two rules for
handling empty modalities:

emptyDiamond
Ô⇒ϕ

Ô⇒⟨⟩ϕ emptyBox
Ô⇒ϕ

Ô⇒[ ]ϕ
�e rule

diamondToBox
Ô⇒[p]ϕ Ô⇒⟨p⟩true

Ô⇒⟨p⟩ϕ
relates the diamond modality to the box modality. It allows to split a total correctness
proof into a partial correctness proof and a separate proof for termination. Note that
this rule is only sound for deterministic programming languages.

2.6.4 Induction

�is following simple Peano induction rule is used both to conclude that a formula
holds for all (natural) numbers, and to use that conclusion as an assumption for other
proof obligations:

natInduction

Ô⇒ I(0)
Ô⇒∀n. (I(n)Ð→ I(n + 1))

∀n. I(n)Ô⇒
Ô⇒

where I is a formula with at most one free variable n ∶N.

It has three premisses: (1) the base case, (2) the step case, and (3) the use case. �e
formula I is the induction hypothesis and n is the induction variable. Dynamic Logic
makes it possible to use this rule to prove a wide range of program properties, since
the induction hypothesis can contain programs.

2.7 Calculus Component 2: Reducing JAVA Programs

2.7.1 �e Basic Assignment Rule

In JAVA—like in other object-oriented programming languages—di�erent reference
variables can refer to the same object.�is phenomenon, called aliasing, causes di�-
culties for handling assignments in a calculus (a similar problem occurs with syntac-
tically di�erent array indices that may refer to the same array element).
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For example, whether or not the formula o1.a=1 still holds a�er the execution
of the assignment “o2.a = 2;” depends on whether or not o1 and o2 refer to the
same object. �erefore, JAVA assignments cannot be symbolically executed by syn-
tactic substitution, as done, for instance, in classic Hoare Logic. Solving this problem
naively—by doing a case split—is ine�cient and leads to heavy branching of the proof
tree.
In the JAVA CARD DL calculus we use a di�erent solution. It is based on the notion

of updates, which can be seen as “semantic substitutions”. Evaluating {loc ∶=val}ϕ in
a state is equivalent to evaluating ϕ in a modi�ed state where loc evaluates to val, i.e.,
has been “semantically substituted” with val.

�e KeY system uses special simpli�cation rules to compute the result of apply-
ing an update to terms and formulas that do not contain programs (⇒ Sect. 2.10).
Computing the e�ect of an update to a formula ⟨p⟩ϕ is delayed until p has been sym-
bolically executed using other rules of the calculus. �us, case distinctions are not
only delayed but can o�en be avoided altogether, since (a) updates can be simpli�ed
before their e�ect has to be computed, and (b) their e�ect is computed when a max-
imal amount of information is available (namely a�er the symbolic execution of the
whole program).

�e basic assignment rule thus takes the following simple form:

assignment
Ô⇒{loc ∶=val}⟨π ω⟩ϕ
Ô⇒⟨π loc = val; ω⟩ϕ

�at is, it just turns the assignment into an update. Of course, this does not solve the
problem of computing the e�ect of the assignment. �is problem is postponed and
solved later by the rules for simplifying updates.
Furthermore—and this is important—this “trivial” assignment rule is correct only

if the expressions loc and val satisfy certain restrictions. �e rule is only applicable
if neither the evaluation of loc nor that of val can cause any side e�ects. Otherwise,
other rules have to be applied �rst to analyze loc and val, check for possible excep-
tions, etc. For example, these other rules would replace the formula ⟨x = ++i;⟩ϕ
with ⟨i = i+1; x = i;⟩ϕ, before the assignment rule can be applied to derive �rst{i ∶=i+1}⟨x = i;⟩ϕ and then {i ∶=i+1}{x ∶=i}⟨⟩ϕ.�ese rules are presented in the
KeY book and we do not show them here.

2.7.2 Rules for Conditionals

Most if-else statements have a non-simple expression (i.e., one with potential side-
e�ects) as their condition. In this case, we unfold it in the usual manner �rst.�is is
achieved by the rule

ifElseUnfold

Ô⇒⟨π boolean v = nse; if (v) p else q ω⟩ϕ
Ô⇒⟨π if (nse) p else q ω⟩ϕ

where v is a fresh boolean variable.
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A�er dealing with the non-simple condition, we will eventually get back to theif-else statement, this time with the condition being a variable and, thus, a simple
expression. Now it is time to take on the case distinction inherent in the statement.
�at can be done using the following rule:

ifElseSplit

se=TRUEÔ⇒⟨π p ω⟩ϕ
se=FALSEÔ⇒⟨π q ω⟩ϕ

Ô⇒⟨π if (se) p else q ω⟩ϕ
While perfectly functional, this rule has several drawbacks. First, it unconditionally
splits the proof, even in the presence of additional information. However, the program
or the sequent may contain the explicit knowledge that the condition is true (or false).
In that case, we want to avoid the proof split altogether. Second, a�er the split, the
condition se appears on both branches, and we then have to reason about the same
formula twice.
A better solution is the following rule that translates a program with an if-else

statement into a conditional formula:

ifElse
Ô⇒ if(se=TRUE) then ⟨π p ω⟩ϕ else ⟨π q ω⟩ϕ

Ô⇒⟨π if (se) p else q ω⟩ϕ
Note that the if-then-else in the premiss of the rule is a logical and not a program
language construct (⇒ Def. 2.8).

�e ifElse rule solves the problems of the ifElseSplit rule described above. �e
condition se only has to be considered once. And if additional information about its
truth value is available, splitting the proof can be avoided. If no such information is
available, however, it is still possible to replace the propositional if-then-else operator
with its de�nition, resulting in

(se=TRUE)Ð→⟨π p ω⟩ϕ ∧ (se /=TRUE)Ð→⟨π q ω⟩ϕ
and carry out a case distinction in the usual manner.
A problem that the above rule does not eliminate is the duplication of the code

part ω. Its double appearance in the premiss means that we may have to reason about
the same piece of code twice. Leino [2005] proposes a solution for this problemwithin
a veri�cation condition generator system. However, to preserve the advantages of a
symbolic execution, the KeY system here sacri�ces some e�ciency for the sake of
usability. Fortunately, this issue is hardly ever limiting in practice.

�e rule for the swith statement, which also is conditional and leads to case
distinctions in proofs, is not shown here. It transforms a swith statement into a
sequence of if statements.
2.7.3 Unwinding Loops

�e following rule “unwinds” while loops. Its application is the prerequisite for sym-
bolically executing the loop body. Unfortunately, just unwinding a loop repeatedly is
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only su�cient for its veri�cation if the number of loop iterations has a known upper
bound.
If the number of loop iterations is not bounded, the loop has to be veri�ed using

either induction (⇒ Sect. 2.6.4) or an invariant rule (⇒ Sect. 2.8). If induction is used,
the unwind rule is also needed as the loop has to be unwound once in the step case of
the induction.
In case the loop body does not contain break or ontinue statements (which is

the common case), the following simple version of the unwind rule can be applied:

loopUnwind
Ô⇒⟨π if (e) { p while (e) p } ω⟩ϕ

Ô⇒⟨π while (e) p ω⟩ϕ

2.7.4 Replacing Method Calls by their Implementation

Symbolic execution deals with method invocations by syntactically replacing the call
by the called implementation (veri�cation via contracts is described in Sect. 2.9). To
obtain an e�cient calculus we have conservatively extended the programming lan-
guage with two additional constructs: a method body statement, which allows us to
precisely identify an implementation, and a method-frameblock, which records the
receiver of the invocation result and marks the boundaries of the inlined implemen-
tation.

2.7.5 Instance Creation and Initialization

JAVA CARD DL, like many modal logics, operates under the technically useful constant
domain semantics (all program states have the same universe).�is means, however,
that all instances that are ever created in a program have to exist a priori. To resolve
this seeming paradox, we use ghost �elds that allow to change and query the program-
visible instance state (created, initialized, etc.).
To handle instance initialization, we use an approach that is based on program

transformation. �e transformation reduces a JAVA program p to a program p′ such
that the behavior of p (with initialization) is the same as that of p′ when initializa-
tion is disregarded.�is is done by inserting code into p that explicitly executes the
initialization.

2.7.6 Handling Abrupt Termination

In JAVA, the execution of a statement can terminate abruptly (besides terminating
normally and not terminating at all). Possible reasons for an abrupt termination are
(a) that an exception has been thrown, (b) that a loop or a swith statement is ter-
minated with break, (c) that a single loop iteration is terminated with the ontinue
statement, and (d) that the execution of a method is terminated with a return state-
ment. Abrupt termination of a statement either leads to a redirection of the con-
trol �ow a�er which the program execution resumes (for example if the exception
is caught), or the whole program terminates abruptly (if the exception is not caught).
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If the Whole Program Terminates Abruptly

In JAVA CARD DL, an abruptly terminating statement—where the abrupt termination
does not just change the control �ow but actually terminates the whole program p in
a modal operator ⟨p⟩ or [p]—has the same semantics as a non-terminating statement
(Def. 2.13). For that case rules such as the following are provided in the JAVA CARD DL
calculus for all abruptly terminating statements:

throwDiamond

Ô⇒ false

Ô⇒⟨throw se; ω⟩ϕ
throwBox

Ô⇒true

Ô⇒[throw se; ω]ϕ
Note that in these rules, there is no inactive pre�x π in front of the throw statement.
Such a π could contain a try with accompanying ath clause that would catch the
thrown exception. However, the rules throwDiamond, throwBox etc. must only be
applied to uncaught exceptions. If there is a pre�x π, other rules described belowmust
be applied �rst.

If the Control Flow is Redirected

�e case where an abruptly terminating statement does not terminate the whole pro-
gram in the modal operator but only changes the control �ow is more di�cult to han-
dle.�e basic idea for handling this case in the calculus is to execute the change in
control �ow symbolically by syntactically rearranging the a�ected program parts.�e
calculus rules have to consider the di�erent combinations of pre�x-context (begin-
ning of a block, method-frame, or try) and abruptly terminating statement (break,ontinue, return, or throw). We omit these rules here.
2.8 Calculus Component 3: Invariant Rule for Loops

�ere are two techniques for handling loops in KeY: induction and using an invariant
rule. For the sake of clarity, we show here a “classical” invariant rule. In particular,
we assume that there is no abrupt termination and that loop guard expressions do
not have side-e�ects. In reality, the KeY calculus implements a much more involved
version of the rule.

invRuleClassical

ΓÔ⇒UInv, ∆
Inv, seÔ⇒[p]Inv
Inv, ¬seÔ⇒ϕ

ΓÔ⇒U[while (se) { p }]ϕ, ∆ (∗)
�is rule states that, if one can �nd a formula Inv such that the three premisses hold
requiring that

(a) Inv holds in the beginning,
(b) Inv is indeed an invariant, and
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(c) the conclusion ϕ follows from Inv and the negated loop condition ¬se,

then ϕ holds a�er executing the loop (provided it terminates).
Remember that the symbol (∗) in the rule schemameans, that the context Γ, ∆,U

must be empty unless its presence is stated explicitly (as in the �rst premiss), i.e., only
instances of the schema itself are inference rules.

2.9 Calculus Component 4: Using Method Contracts

�ere are basically two possibilities to deal with method calls in program veri�cation:
inlining the body of the invoked method (⇒ Sect. 2.7.4) or using the speci�cation
(which then, of course, has to be veri�ed). �e speci�cation of a method is called
method contract and is de�ned as follows.

De�nition 2.34 (Method contract). A method contract for a method or construc-
tor op declared in a class or interface C ∈P is a quadruple

(Pre, Post,Mod, term)
where:

• Pre∈Formulas is the precondition that may contain the following program vari-
ables:
– self for the receiver object (the object which a caller invokes the method on);
if op refers to a static method or a constructor the receiver object variable is
not allowed;
– p1 . . . , pn for the parameters.

• Post∈Formulas is the postcondition of the form

(exc=nullÐ→ϕ) ∧ (exc¬=nullÐ→ψ)
where ϕ is the postcondition for the case that the method terminates normally
and ψ speci�es the case where the method terminates abruptly with an exception.
�e formulas ϕ and ψ may contain the following program variables:
– self for the receiver object; again the receiver object variable is not allowed
for static methods;
– p1 , . . . , pn for the parameters;
– result for the returned value;

• Mod is a modi�er set for the method, i.e., an upper bound on state changed by op.
•�e termination marker term is an element from the set {partial, total}; the
marker is set to total if and only if the method contract requires the method or
constructor to terminate, otherwise term is set to partial. �

�e formulas Pre and Post are JAVA CARD DL formulas. However, in most cases they
do not contain modal operators.�is is in particular true if they are automatically
generated translations of JML or OCL speci�cations.

�e KeY calculus contains rules both for replacing method invocations with con-
tracts and establishing their correctness.
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2.10 Calculus Component 5: Update Simpli�cation

�e process of update simpli�cation comprises (a) update normalisation and (b) up-
date application. Update normalisation transforms single updates into a certain nor-
mal form, while update application computes the e�ect of applying an update to a
term, a formula, or another update. Note that both normalisation and application of
updates is done automatically; there are no interactive rules for that purpose.
We do not give the rules for updates here. We just note that updates can be dis-

tributed over logical operators (exceptmodal operators) as (a) the semantics of logical
operators is not a�ected by a state change (b) the state change a�ected by an update
is deterministic.�e application of an update u to a formula with a modal operator,
such as {u}⟨p⟩ϕ and {u}[p]ϕ, cannot be simpli�ed any further. In such a situation,
instead of using update simpli�cation, the program p must be handled �rst by sym-
bolic execution. Only when the whole program has disappeared, the resulting updates
can be applied to the formula ϕ.

Example 2.35 (Update application). As an example, consider the term

{a(o) ∶=t}a(p) .
�e update a(o) ∶=t a�ects the term a(p) i� o and p evaluate to the same domain
element. In this case, the result is t, otherwise the update is simply propagated giving
a({a(o) ∶=t}p).�e latter simpli�es to p, since it can be excluded syntactically that
an update to a unary function a can a�ect the non-rigid nullary function p.

�us, the result of applying the update in the original term is the conditional term

if p=o then t else a(p) ,
which coincides with our intuition. �



Part II

A Novel Approach to Veri�cation of Multi-threaded

JAVA Programs





Typographic Conventions

To keep the introductory material compatible with [Beckert et al., 2007] on one hand,
but to use “natural” notation in the Part dedicated to multi-threading on the other
hand, we in the following overload certain symbols. From now on:

α denotes in MODL a part of the program before the emphasized position. Was:
typing function (⇒ Def. 2.3).

πi denotes in MODL the thread choice function (“permutation”) at position i.
Was: the non-active pre�x of a statement sequence (⇒ Sect. 2.5.4). MODL gen-
eralizes the non-active pre�x to the irrelevant program part α (above).

T denotes in MODL the carrier set of thread ids. Was: the set of types in a type
hierarchy (⇒Def. 2.1).⟨⋅⟩ denotes in MODL the concurrent diamond modality. Was: the sequential JAVA
CARD modality (⇒ Def. 2.8). Sequential diamond modality in MODL is de-
noted by ⟨⋅⟩.�e same applies for the box modality [⋅].
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Introducing MODL—AMulti-threaded Object-oriented

Dynamic Logic

Multithreading is just one damn thing a�er,
before, or simultaneous with another.

Andrei Alexandrescu

3.1 Main Idea of the Proposed Logic and Proof System

Our aim has been to design a program logic that

• re�ects the properties of JAVA concurrency in an intuitive manner
• has a sound and (relatively) complete calculus
• employs only sound and transparent abstractions
• poses no bounds on the state space or thread number
• allows reasoning about properties of the scheduler, but does not require such rea-
soning for program veri�cation.

In parallel to Object-oriented Dynamic Logic (ODL) [Beckert and Platzer, 2006b],
which captures the essence of object-orientation in a small language, we have called
our logic MODL—Multi-threaded Object-oriented Dynamic Logic.

�e logic MODL

Unsurprisingly, MODL is a close relative of JAVA CARD DL, the sequential KeY logic.
It has the familiar modal operators ⟨p⟩ϕ and [p]ϕ referring, this time, to the total and
partial correctness of a multi-threaded program p.�e biggest di�erence lies in the
programs:multi-threaded programs require a di�erent representation than sequential
ones. Conceptually, we follow the CFG-style programmodel of Keller [1976], who has
de�ned “parallel programs” as

a bipartite directed graph, the nodes of which are divided into
• place nodes: representing points at which an instruction pointer of a pro-
cessor may dwell,



44 3 Introducing MODL—AMulti-threaded Object-oriented Dynamic Logic

• transitions nodes: representing a class of transitions, each denoting an
event which corresponds to the execution of a particular instruction.

In our case, the role of place nodes is played by set-valued control variables, which
are part of the state and contain thread ids (collectively we also call them a thread
con�guration).�e transition nodes are given by JAVA-like statements, which appear
as “program text” inside the modal operator (⇒ Fig. 3.1).{❶ ❸ ❺}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
thread ids

a=x; if (a>0) {{❷ ❹}x=a-1; ...}
❶ ❸

❺

if (true)a=x; ❷ ❹
if (a>0)x=a-1; . . .

Figure 3.1. A textual and a graph representation of a multi-threaded program (together with
thread con�guration). �e exact de�nitions are given in Section 4.1

Execution of a program corresponds to the movement of thread id “tokens”, while
the program text remains unaltered.�e movement is accompanied by a correspond-
ing change in data state. It is clear that programs can behave di�erently depending on
the thread scheduling.�e natural question is how to model the scheduler?
With a purely indeterministic scheduling, we have no choice but to perform (a

prohibitively large number of) case distinctions in the calculus. Unsightly meta-level
e�orts would then be necessary to prune the proof search space and get a grip on the
complexity. Instead, we opt for an underspeci�ed deterministic scheduler, and express
its decisions explicitly on the object level by means of a partially speci�ed scheduling
function.
Such a design gives our concurrent programs (surprisinglymaybe) a deterministic

semantics, just as is the case with sequential JAVA programs (⇒ Sect. 2.2).�e main
advantage is the much stronger control over granularity of reasoning. We can tackle
simple problemswith relatively little e�ort, but still have the power to get into the “gory
details” for demanding cases. Furthermore, we retain bene�cial logical properties, like⟨p⟩ϕÐ→[p]ϕ.
A calculus for MODL

To prove theorems of MODL, we have developed a sequent-style calculus.�e calcu-
lus performs symbolic execution of programs—a method, which goes back to [King,
1976] and ensures good understandability of the process for the user. As far as we
know, this work is the �rst application of symbolic execution to full functional veri�-
cation of multi-threaded programs.
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In principle, the calculus explores the behavior of a concurrent program by build-
ing all possible thread interleavings. Done naively, such an approach is doomed to
failure due to state explosion; it is also inapplicable to systems with an unbounded
number of threads. Our calculus can e�ectively perform such exploration by employ-
ing symmetry reductions that merge many interleavings that are not signi�cantly dif-
ferent.�is is e�ciently possible for the considered language fragment and produces
a feasible number of cases (even in presence of unbounded concurrency). Further
e�ciency gains are possible from appropriate program and proof modularization.
By means of symbolic execution, the calculus reduces assertions about programs

to assertions about data types and permutations, which encapsulate the scheduler
decisions and hide symmetric schedulings. In the desirable case that the program
is scheduling-independent1 the permutations can be removed from the correctness
assertions by application of standard algebraic lemmas. When also the remaining as-
sertions (now without permutations) can be discharged, then the program is fully
correct w.r.t. its functional speci�cation.

Plan of attack

Chapter Content

this chapter continues with a discussion of which features of JAVA concurrency
are supported and surveys related work.

Chapter 4 de�nes the basic version of MODL, introducing the concepts of
threads, deterministic scheduling and thread-local data.

Chapter 5 re�nes the basic version of the logic with amore veri�cation-friendly
scheduler formulation.�e re�ned scheduler model avoids explicit
thread enumeration, allows unbounded thread con�gurations and
symmetry reduction.

Chapter 6 presents the symbolic execution calculus used for veri�cation, de-
scribes how JAVA programs are normalized (“unfolded”) before veri-
fying.

Chapter 7 shows further extensions and re�nements: how to prove atomicity
with invariants, verify condition variables, establishing program cor-
rectness w.r.t. the Java Memory Model; discusses future work.

Chapter 8 describes the implementation of the calculus in the KeY system and
presents case studies.

1 Scheduling independencemeans here that the program’s �nal state always satis�es the spec-
i�cation, in spite of possibly di�erent intermediate states taken in di�erent runs.
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3.2 Modeling JAVA Concurrency

�reads and SharedMemory

Concurrent programming in JAVA is based on shared-memory multi-threading. A
thread is a single �ow of control that can execute program instructions independently
of other threads. A thread, in essence, consists of a program counter and a call stack.
�reads can exchange data via references to the same objects on the shared heap.
In JAVA, threads are created and (to some extent) controlled via instances of thejava.lang.Threadclass. Such instances can be obtained in two ways: (1) by declar-

ing and instantiating a class that extends Thread or (2) by passing a Runnable in-
stance to the standard constructor of the Thread class. Typical code for creating and
starting a thread looks like this:Thread t = new MyThread();t.start();// run() method of MyThread exeutes asynhronously now

JAVA

�e use of objects to create and control threads sometimes obnubilates the fact
that threads and objects are, actually, two orthogonal concepts. JAVA objects aremostly
passive data entities coming to life when threads execute their methods. On the other
hand, objects have only limited means to prevent undesired access.

No thread identities in programs

In MODL threads are currently identi�ed not with java.lang.Thread instances,
but with elements (thread ids or tids) of a not further structured type�read. Cur-
rently, we do not support thread identities in programs.�is means that the program-
mer may not make use of the reference t shown in the listing above.
It is, thus, not allowed to invoke thread-controlling methods of the Thread in-

stance, the most important being t.interrupt() and t.join(). We believe that
this limitation prevents us from verifying only a small fraction of interesting code.
In particular, it does not forbid the use of synchronized blocks or condition variables
with wait()/notify().
Furthermore, we conjecture that it is possible to extend our logic and calculus with

thread identities in programs, since thread identities are completely exposed through
the scheduler function. In this case we would indeed identify the type�read withjava.lang.Thread. In general, using thread identities in programs breaks thread
symmetry and would degrade the performance of the proof system.�is approach
may still be useful in certain cases though.

No dynamic thread creation (but unbounded multi-threading)

�e only thread creation mechanism we currently provide is a possibility to specify
the initial thread con�guration of a program (together with the initial local variable
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assignment). Note that the con�guration values can be symbolic (“k threads”). While
this limitation is indeed unfortunate, it does not impair the usefulness of the calculus
much. It is in the nature of concurrent JAVA applications that most objects are passive
entities.�ey are unaware of thread creation and can (and indeed have to) be veri�ed
for an arbitrary number of threads accessing them.�e most prominent expression of
this fact is library code, which has to be thread-safe for any number of client threads.

Sequential Coverage

On the sequential side, we bene�t from the 100% JAVA CARD coverage of the KeY calcu-
lus.�is includes full support for dynamic object creation (with static initialization),
e�cient aliasing treatment, JAVA-faithful arithmetics, etc. All of these features can be
used in veri�cation of concurrent programs.

Exceptions cannot be caught

One area where there is currently a gap between the concurrent and the sequential
calculus is exception handling. �e concurrent proof system is sound but incom-
plete in this regard. Exceptions are always detected, but once thrown they cannot
be caught.�e calculus treats the whole program as non-terminating in this case. A
possible approach to overcoming this limitation is sketched in the section on future
work (⇒ Sect. 7.4).

No non-atomic loops

Finally, we require all loops to be atomic.�e programmer has to ensure that no (sig-
ni�cant) interleavings occur while the loop runs. �is property can be checked by
our method as described later on (⇒ Sect. 7.1). An approach for working around
this limitation as well as some remarks about developing a more elaborated model
of the scheduler that does not have this restriction are given in the section on future
work (⇒ Sect. 7.4).

Mutual Exclusion

Mutual exclusion of threads in critical regions is achieved by means of synchronized
methods and blocks. Every such block includes a reference to a locked object (for syn-
chronized instance methods it is the object referenced by this, for static methods—
the class object). Locks are binary semaphores, which can be acquired or released by
a thread. Every object has one such lock. At most one thread can possess any given
lock at the same time.�reads trying to enter a synchronized block where the lock is
held by another thread are blocked until the lock becomes available.
Locks can only be acquired and released in block-structured manner, mean-

ing that when the control �ow leaves a synchronized block—whether normally or
abruptly—the involved lock is automatically released. Locks are also reentrant: if a
thread already possesses a certain lock, a repeated acquisition of the same lock suc-
ceeds immediately. In this case we say that the lock depth has increased.
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Declaring a method synchronized does not mean that it becomes atomic, i.e., free
from harmful interference. Atomicity is only guaranteed if all threads in the system
potentially accessing the same data acquire the same lock(s).�reads not adhering
to an appropriate locking protocol can observe inconsistent state or perform harmful
updates, destroying the assumptions of other threads.
A particular problem with synchronized blocks is that the value of the lock ex-

pression, which may be as simple as a �eldsynhronized(lok) {...}
or as complex as a methodsynhronized(lok()) {...}
can change over time.�reads seeing di�erent values of the lock expression in this
case are no longer guaranteed mutual exclusion.�is subtle issue is a source of hard-
to-�nd errors.

�emain problemwith locking—or,more general, with JAVA concurrency—is that
it is a major source of non-compositionality.�ere is no single point where a correct
policy for accessing a shared resource is �xed in JAVA. Each thread must voluntarily
adhere to the programmer-designed locking protocol in order for the whole applica-
tion to be correct.

Modeling locking in our programming language

To make lock acquisition and release explicit, we extend the Objet class with two
“ghost” methods:

1. publi void <lok>()
2. publi void <unlok>() .
Code marked as synchronized is automatically surrounded by invocations of these
methods during the unfolding stage (⇒ Sect. 6.2). To keep track of locking state we
also declare two ghost �elds per object:

1. <lokedby> of type tid (identity of the thread holding the object’s lock)
2. int <lokount> (locking depth).

Condition Variables

An important feature of JAVA’s concurrency mechanism is condition variables. It al-
lows threads to suspend execution until an external signal is received.�e signaling
does not involve thread identities, but works via a shared reference to an arbitrary
object.

�e waiting thread must acquire the object’s lock �rst. Calling wait() on the ob-
ject releases the lock and suspends thread execution. When a wake-up signal is re-
ceived, the thread leaves the suspended state but does not yet continue execution. It
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must now compete for the acquisition of the lock with other threads. When it suc-
ceeds, the depth of the lock is restored to the state before the wait.

�e notifying thread must possess the object lock as well. Sending a wake-up sig-
nal to one (randomly chosen) suspended thread requires callingnotify() on the cor-
responding object. Waking up all threads waiting is possible by calling notifyAll().
Again, the waiting threads will be able to proceed in the earliest when the notifying
thread has released the lock.
Since other threads can intervene and destroy the condition between the wake-

up signal and lock re-acquisition (a phenomenon known as “barging”), it is in most
cases compulsory to re-test the condition upon wake up and return to the suspended
state if it is not satis�ed.�is practice is advocated by all programming guidelines and
followed by most of the programs.

�e Java Memory Model

�e JAVAMemoryModel (JMM) is a part of the JAVA Language Speci�cation, which de-
scribes how threads interact via sharedmemory.Many programmers assume that JAVA
multi-threading operates under an intuitive, sequentially consistent memory model.
Sequential consistency [Lamport, 1979] means that updates to shared state are imme-
diately visible to all threads, and concurrent program behavior can be described by
thread interleavings. In reality, the Java Memory Model provides much weaker guar-
antees: updates to shared state performed by one thread need not become immediately
visible to other threads. Even worse, updates may become visible to other threads in
an order di�erent from the one in which they have been carried out.

�e JMMhas undergone greater revisions within [JSR-133].�e latest, most com-
prehensive accounts from the responsible authors are [Manson, 2004; Manson et al.,
2005a]. In them the JMM designers make three promises to the users:

1. A promise for programmers. Programs without data races (also known as prop-
erly or fully synchronized programs) shall have sequentially consistent semantics.
�is is also known as the DRF guarantee.

2. A promise of security. Programs with data races shall still enjoy certain minimal
security guarantees.�e JMMpromises that a programwith a data race will never
divulge—due to the race alone—potentially sensitive information contained in
program parts unrelated to the race.
In other words, the JMM promises that variables can only assume values that are
in some sense “justi�able” by the program at hand. Unjusti�able out-of-thin-air
values (OoTA), which could breach security, should be prevented. What consti-
tutes an OoTA value is a controversial issue and is currently speci�ed by means
of an example catalog.
To keep this promise the JMM de�nes a (complicated) policy as to what consti-
tutes an allowed behavior in presence of a data race.

3. A promise for compilers. Common compiler and VM optimizations shall be al-
lowed.
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Current research [Aspinall and Ševčík, 2007;Huisman and Petri, 2007] shows that the
latest JMM formulation still su�ers from quite severe de�ciencies. In particular, the
promises 2 and 3 are not ful�lled.�e promise 1, in contrast, is ful�lled and it is con-
sensus in the �eld that the only way programmers can achieve well-de�ned program
behavior is by staying within the fully-synchronized fragment of JAVA. Calculus rules
for checking this in our proof system are presented in Section 7.3.

Finalization and Other Concurrency Primitives

Among the things that we do not consider is �nalization, even though �nalizers intro-
duce concurrency into an application.�e use of �nalizers is further complicated by
intricate interactions with the Java Memory Model. Experts estimate that most uses
of �nalizers in practice are subtly incorrect [Boehm, 2005]. Still, in our logic, we have
to disregard �nalization as we do not model garbage collection.
Furthermore, since our logic lacks any notion of time, we do not treat primitives

that involve timing, such as wait(long millises).
�e atomicity of assignments to non-volatile long or double variables is imple-

mentation-speci�c according to the JLS. A JVM is allowed to implement a single write
to such a variable as two separate writes: one to each 32-bit half. For this reason, we
currently demand that all long or double variables are declared volatile.
3.3 RelatedWork

Westheimer’s Discovery: A couple of months
in the laboratory can frequently save a couple
of hours in the library.

Classical approaches to deductive veri�cation of concurrent programs

One of the �rst deductive veri�cation methods was the partial correctness proof
method of Ashcro� [1975] and Keller [1976], incorporating a CFG-like program for-
malism and an induction principle.�e principle is to show that every atomic state-
ment preserves a global invariant. Of course, such global invariants can quickly be-
come unwieldy without modularization. Nonetheless, these early works contain many
seminal insights into the inner working of concurrent programs
Another classical method is due to Owicki and Gries [1976b] and builds on Hoare

Logic for sequential programs.�e method combines a proof of local (i.e., sequen-
tial) correctness with a non-interference check. �e latter establishes that assump-
tions used throughout the proof of local correctness are not destroyed if the sched-
uler chooses to interleave execution with other threads.�is leads to proof size that
is quadratic in the number of statements.�e method is not compositional. We have
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implemented an Owicki-Gries-style proof system for a fragment of JAVA in KeY [Kle-
banov, 2004]. Further modern adaptations of the method are described in the next
section.
A revolutionary step towards compositional veri�cation of concurrent programs

was the rely-guarantee method of Jones [1981].�emethod introduces for each thread
two predicates: rely and guarantee. In contrast to assertions or postconditions these
predicates range not over states but over pairs of consecutive states.�e proofmethod
consists in showing that every step of a thread satis�es its guarantee obligation as-
suming that every step of the environment satis�es the rely assumption.�e rely as-
sumption in its turn is composed from the guarantee obligations of other threads.�e
method is compositional and the proof size is linear in the number of threads.�e dif-
�culty resides in summarizing the behavior of a thread in one transitive predicate.

Deductive veri�cation of multi-threaded JAVA programs

Several deductive calculi for (di�erent fragments of) sequential Java exist [Jacobs and
Poll, 2001c; Poetzsch-He er and Müller, 1999b; von Oheimb, 2001a; Zee et al., 2008;
Marché et al., 2004]. In contrast, the only implemented deductive veri�cation sys-
tem formulti-threaded JAVA existing to date is—to our knowledge—Verger [Ábrahám
et al., 2005].�e calculus is an adaptation of the Owicki-Gries method to JAVA, incor-
porating a proof method for CSP in order to reason about method calls as message
passing.�e system generates veri�cation conditions fromprograms augmented with
auxiliary variables and annotated with Hoare-style assertions.�e veri�cation condi-
tions are subsequently discharged in PVS.�e system has a good concurrent language
coverage.
A recent and more accessible formulation is [de Boer, 2007], which replaces the

CSP calculus with proof theory of recursive procedures.
Separation Logic is another extension of Hoare Logic with operators for reasoning

about resource access, which allows for greater modularity of reasoning.�e logic has
also been extended to handle JAVA and concurrency, and the latest development is a
“marriage” of rely-guarantee and Separation Logic [Vafeiadis and Parkinson, 2007].
�e latter promises better modularity in dealing with rely and guarantee predicates.

Temporal logics

A huge body of work is available on verifying temporal properties of concurrent so�-
ware.�is includes model checkers and even deductive proof systems (e.g., byManna
and Pnueli [1991]). In contrast to using temporal logic, though, a proof system for
Dynamic Logic allows functional veri�cation, i.e., full reasoning about data.�is way
veri�cation tasks can be tackled where not only safety or liveness but the input-output
relation of a concurrent program is of interest.

Concurrent Dynamic Logic

�e onlyDynamic Logic for a programming language incorporating concurrency is—
to our knowledge—the Concurrent Dynamic Logic (CDL) by Peleg [1987b].He notes,
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however, that this particular logic “su�ers from the absence of any communication
mechanisms; processes of CDL are totally independent and mutually ignorant”. Pe-
leg [1987a] gives two extensions of CDL with interprocess communication: one with
channels and one with shared variables. In both works cited, the focus is on studying
concerns of expressivity and decidability of the logics (communication renders the
logic highly undecidable).�e issue of a calculus or program veri�cation in general is
not touched.

Model checkers

Veri�cation of concurrent systems has traditionally been—with a few exceptions—the
domain of model checking tools.�is holds also for JAVA program veri�cation, where
several very successful model checking frameworks have been established. Promi-
nent model checkers for JAVA programs are Bogor [Robby et al., 2003b] and Java
PathFinder [Havelund and Pressburger, 2000a].

�ese tools can check not only temporal but also functional properties.�ey em-
ploy very clever optimizations (abstractions) and can thus verify programs of sub-
stantial size. Many of these abstractions—like symmetry reduction—are sound and
do not come at the price of missed errors. Still, to guarantee termination of the model
checking process, a �nite system model is required. Most of the time, this is achieved
by unsound abstraction, such as bounding the length of explored executions, number
of threads, number of loop iterations, size of initial heap con�gurations, etc. In this
setup model checking is very useful for detecting bugs, but provides no indication of
correct behavior under all circumstances.
A sound way to overcome the �nite-model barrier is to use abstraction re�ne-

ment. Counter-Example-Guided Abstraction Re�nement (CEGAR) is a relatively re-
cent technique that does so. It allows checking strong properties but must resort to
iterated manual model re�nement in order to eliminate spurious counter-examples
appearing due to overapproximation. While CEGAR has been successfully used in
the veri�cation of sequential C programs, to our knowledge, this technique has not
been applied to veri�cation of programs in JAVA-like languages.
A comprehensive control �ow model of JAVA concurrency is given in [Delzanno

et al., 2002].�e authors use a variant of Petri nets to model the control �ow of con-
current programs.�e nets are speci�cally tailored to treat the “partially non-blocking
rendez-vous” nature of JAVA’s wait()/notify()mechanism.�e authors do not per-
form functional veri�cation but have built amodel checker that can check safety prop-
erties expressed in terms of control �ow.�eir Petri net representation is conceptually
close to ours, though we use full programs as transitions.
Yahav [2001] describes a system for verifying safety properties of multi-threaded

JAVA-like programs.�e system (implemented in the TVLA framework) is an instance
of symbolic on-the-�ymodel checking, where �rst-order logical structures are used to
represent states of the program. It can cope with an unbounded number of allocated
objects by building conservative abstract descriptions of (multiple) program states
in 3-valued logic. Also, in the above paper, symmetry reduction is mentioned and
the author reports having obtained interesting results for an unbounded number of
threads.
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Static veri�ers

Another broad category of veri�cation systems for concurrent programs are static
veri�ers. Static veri�ers are tools that can automatically check program properties
by su�ciently approximating the program semantics. Many static veri�ers allow the
users to improve the quality of the approximation by adding annotations to the code.
Per design, static veri�ers are not geared towards input-output reasoning. �ey

are—in most cases—also neither sound nor complete. Still, such tools are very useful
for automated detection of concurrency-related problems in practice.�ere is also a
big potential in combining static veri�cation systems with systems for full-functional
veri�cation.
Aprominent representative of this class of tools is ESC/Java [Flanagan et al., 2002],

an extended static checker for many types of properties. On the concurrency side this
includes inter-thread escape analysis, race condition detection, deadlock detection,
etc.�ere are also a number of dedicated static analysis tools for race condition detec-
tion. One of them is Houdini/rcc [Abadi et al., 2006], which is based on an elaborate
type system.
Such tools are aimed to check that access to object �elds is guarded by locks and

that all threads adhere to a consistent locking policy. �is check can be easy if the
object �elds are protected by the lock associated with the object itself or a dedicated
object referenced by a �nal static �eld.More elaborated locking schemesmight require
user annotation or are beyond the scope of the tools.
A class of its own in this category is the SPEC# system, which (in its deriva-

tive SpecLeuven) incorporates a “static veri�er” for a concurrent object-oriented
language [Jacobs et al., 2006]. For one, veri�cation with SPEC# guarantees the ab-
sence of data races and deadlocks. It also guarantees compliance of the program with
programmer-providedmethod contracts and object invariants.�e approach is sound
but not complete.
A very interesting body of research has beenproduced byGreenhouse and Scherlis

[2002b].�e authors have developed an annotation language to specify many impor-
tant aspect of multi-threaded programs together with a tool suite to statically check
them.�e annotations include:

• e�ects (an upper bound on state a method reads and writes)
• aliasing intent. Unaliased data can be reasoned about sequentially
• locking intent. Programmers can associate locks with regions of state; the tool
veri�es that state is accessed only when the appropriate lock is held. Programmers
can also declare that a method requires that a particular lock be held by the caller

• concurrency policy. Programmers can specify methods that can be safely exe-
cuted concurrently.

�e authors also make it plausible that for lock-based programs, concurrency pol-
icy combined with models of locking intent is a suitable surrogate for representation
invariants.
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Alternatives to multi-threading

�ere are countless models for concurrent computation. We would like to mention
some alternatives to multi-threading that are interesting in our context.
One approach trying to overcome the di�culties inherent to JAVA threads is

JCSP [Welch et al., 2007;Welch and Austin]. JCSP is a JAVA library for concurrent pro-
gramming by means of Communicating Sequential Processes (CSP). CSP is a process
algebra developed by Hoare [1985]. It has a precise and—in contrast to JAVA threads—
compositional semantics.�e programmer can reap these bene�ts by implementing
the sequential process parts in regular JAVA and composing them concurrently us-
ing the CSP operators provided by the JCSP library. A calculus for verifying JCSP
programs has been developed and implemented in the KeY system by Philipp Rüm-
mer [Klebanov et al., 2005].
Some of the most massively concurrent applications available today are pro-

grammed in Erlang. Erlang is a functional programming language designed at the
Ericsson Computer Science Laboratory and popular in telecommunications. Indus-
trial Erlang programsmay contain thousands of processes communicating bymessage
passing. A deductive Erlang Veri�cation Tool (EVT) based on modal µ-calculus was
built by Arts et al. [2003].
Concurrent objects o�er an alternative concurrency model for object-orientation,

which has advantages overmulti-threading, especially in highly parallel or distributed
architectures. Two examples of languages for programming with concurrent objects
are SCOOP [Arslan et al., 2006] and Creol [Johnsen et al., 2006]. A veri�cation cal-
culus for Creol in KeY is currently being incepted.
Today,multi-threading remains the predominant concurrency programming par-

adigm in spite of its problems. Seriously facing its issues, though, the only prudent ad-
vice to application developers is to avoid rolling ownmulti-threaded solutions when-
ever possible. If concurrency is necessary, it is recommended to rely on patterns and
architectures developed by experts (and potentially veri�ed), such as those in thejava.util.onurrentpackage of the standard JAVA library.
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MODL—A General but Overly Concrete Version

We start with a very general formalism which is quite close to the “machine” seman-
tics.�e usefulness of this logic is not so much in its suitability for veri�cation (this
will be addressed in the subsequent chapter), but in formalizing basic concepts of
thread-based concurrency. We de�ne the syntax and semantics of a multi-threaded
JAVA-like programming language and a Dynamic Logic for reasoning about it. Along
the way we introduce such concepts as thread con�gurations, shared and thread-local
data, and a deterministic scheduler model.

4.1 Syntax of MODL

4.1.1 �reads andMulti-threaded Programs

�e concurrent programming language that we consider is very close to a fragment
of multi-threaded JAVA. Its basic constructs are assignments, if-then-else statements,
while-loops, JAVA-like concurrency primitives, but also atomic blocks. Several threads
can execute a program concurrently.�us, in contrast to the sequential programs in
KeY, a concurrent program is a passive template “without life”, until a thread con�gu-
ration is added. A thread con�guration is a part of the program state describing which
threads are executing the program.�reads are given a unique identi�er, convention-
ally called thread id (tid), which is a term of type�read; they are in fact identi�ed
with this identi�er. In the following, we will denoteDThread , the carrier set of�read,
as T .
In addition to concurrent programs, we also use sequential MODL programs. A

sequential program is, roughly, a concurrent program executed by a single thread.
�e executing thread is explicitly identi�ed in thread-local variables of the program.
�is explicit thread identi�er is also the major di�erence between sequential MODL
programs and sequential programs of JAVA CARD DL. In practice, we see sequential
MODL programs as sequential programs of JAVA CARDDL operating on non-standard
variables.
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4.1.2 Signature: Heap- and Stack-Allocated Data

Wemaintain the type hierarchy (⇒ Sect. 2.3.1) and the signature (⇒ Sect. 2.3.2) de�-
nitions of the sequential JAVA CARD DL. In particular, everything that is subject to as-
signment during program execution (variables, object attributes, arrays) is modeled
by non-rigid functions. We call these functions program variables.�e full details of
this modeling in JAVA CARD DL were given in Note 2.4, though we summarize them
again in Table 4.1a.
JAVA CARD DL does not distinguish between heap- and stack-allocated data. In

MODL this distinction becomes important. A variable on the heap refers to a sin-
gle value and assignments changing it are immediately visible to all threads.1 On the
other hand, every thread has its own copy of each local variable (allocated on the
thread’s stack). An assignment to a local variable within one thread is not visible to
other threads.
Table 4.1b shows how program variables are handled in MODL.�e di�erence to

JAVA CARD DL is in how (thread-)local variables are modeled (�rst line).�e thread-
local variable v in a concurrent program refers to a series of values. When the program
executes, the unique value is identi�ed by the context of the currently running thread.
In the logic, we can talk about the local variable values in di�erent threads by using a
combination of variable name and thread id. All other variables (lines 2–4) are con-
sidered heap-allocated and are modeled exactly as in JAVA CARD DL.

�is way the appearance of thread-local variables depends on the context. A
thread-local variable appears:

• in concurrent programs as: v
• in sequential programs as: v(t)
• in the logic (incl. updates) as: v(t)
where t is a thread identi�er.

Example 4.1 (Arity of thread-local variables). Consider the concurrent MODL pro-
gram if (a>0) . . .
where a is a local variable. �is thread-local variable a is modeled by a non-rigid
function of arity 1. In the program, however, it appears without parameters, i.e, has
the arity 0. Symbolic execution of this statement by a thread with id t will lead to the
branch condition formula a(t)>0 appearing in the proof. At this point, the symbol a
appears with its full arity. �

Note 4.2 (Prede�ned symbols). As with JAVA CARD DL (⇒ Note 2.4, Def. 2.13), we ex-
pect that a signature of MODL always contains certain prede�ned symbols (sched-
uler function symbols, enabledness predicate symbols, etc.).�ese symbols will be
introduced in following de�nitions, usually together with axioms constraining their
semantics. �

1�ecross-thread visibility is actually subject to conditions of the JavaMemoryModel, which
we discuss in detail in Section 7.3.
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(a) in JAVA CARD DL

Program entity modeled by notation in logics

local variable v constant v

static �eld access Class.a constant Class.a

instance �eld access o.a unary function a(o) or o.a
array access o[i℄ binary function [ ℄(o, i) or o[i℄

(b) in MODL

Program entity modeled by notation in logics

local variable v (of thread t) unary function v(t)

static �eld access Class.a constant Class.a

a(o) or o.a[ ℄(o, i) or o[i℄ ⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

heap
access

instance �eld access o.a unary function

array access o[i℄ binary function

Table 4.1.How program variables are modeled

4.1.3 Terms and Updates

Terms and updates are de�ned exactly as in JAVA CARD DL (⇒ Sect. 2.3).

4.1.4 Syntax of Programs

First, we de�ne sequential programs, which later serve as building blocks for concur-
rent programs.
Our sequential programs have several peculiarities:

• �ere is a stop statement, which does nothing and is never enabled.�is state-
ment is of little use in the sequential case, but is used to model concurrent pro-
grams with several thread classes.

• �ere is an atomic block construct, which, again, only becomes useful when the
programming language is extended with concurrency.

• Every sequential program is identi�ed with some thread executing it.�e thread
id appears in all local variables as an (additional) argument.

• Assignments must not contain more than one heap access.�is restriction is nec-
essary to faithfully model the semantics of concurrent JAVA assignments. We con-
sider assignments to be atomic in our language, while they indeed can be non-
atomic in JAVA. A program with more than one heap access in an assignment can
easily be transformed into a program satisfying the above condition by adding as-
signments that store the value of heap-allocated variables in fresh local variables.

• Conditions of if-then-else statements must be local variables not occurring in the
then- or else-part of the statement.�is restriction is similarly easy to satisfy by
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adding assignments with fresh local variables.�e fact that these variables—once
set—cannot change their value eliminates technical di�culties when specifying
execution path conditions.

De�nition 4.3 (Sequential programs).�e set of sequential programs is recursively
de�ned as follows. For all thread ids τ:

(Stop)stop is a program.
(Assignment)

f (t1,...,tn)=t; is a program if
1. f is a non-rigid function symbol of arity n
2. t1 , . . . , tn , as well as t are terms correctly typed w.r.t. f
3. the assignment contains at most one heap access (⇒Table 4.1b).

(Sequential composition)
pq is a program if p and q are programs.

(Conditional)if (v(τ)) {p} else {q} is a program if p and q are programs and v(τ) is a
thread-local boolean variable not appearing in p or q.

(Loop)while (v(τ)) {p} is a program if p is a program, and v(τ) is a thread-local
boolean variable.

(Atomic block)≪p≫ is a program if p is a program.
(Lock acquire)

o(τ).<lok>(); is a program if o(τ) is a thread-local reference-valued variable.
(Lock release)

o(τ).<unlok>(); is a program if o(τ) is a thread-local reference-valued vari-
able. �

Example 4.4 (Sequential program syntax). �e following is an example of a concrete
sequential program executed by thread t:o(t).<lok>();a(t)=o(t).sum;o(t).sum=a(t)+e(t);o(t).<unlok>(); �

Wenowuse the sequential programming language to de�ne concurrent programs.
Conversely, the veri�cation calculus breaks concurrent programs down into sequen-
tial fragments.�e part of this process that builds a sequential program from a part
of a concurrent one is called sequential instantiation (⇒ Def. 4.7).
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De�nition 4.5 (Concurrent programs). �e set of concurrent programs is de�ned
as follows. Every sequential program is a concurrent program under the following
transformation/conditions:

• all occurrences of loops must be within atomic blocks
• atomic blocks may not be nested
• atomic blocks may not contain locking operations
• thread indices are stripped from statements
• all function symbols representing local variables are stripped of thread identity
(number of arguments is one less than actual arity)
• the last statement of the program must be stop
• stopmay only occur at the top level in a program. �

Example 4.6 (Concurrent program syntax).�e following is an example of a concrete
concurrent program with one thread class:o.<lok>(); a=o.sum; o.sum=a+e; o.<unlok>(); stop; .
�e following is an example of a concrete concurrent programwith two thread classes:x=1; stop; x=2; stop; .

�

�e purpose of the �nal stop statement is to provide a “parking position” for the
threads that have run to completion. It also allows us to model parallel composition
as sequential composition.�e latter program in the above example is conventionally
written as x=1; ∣∣ x=2; .
We will omit the �nal stop statement from concurrent programs whenever clarity is
not sacri�ced.

De�nition 4.7 (Sequential instantiation). If p is a concurrent program and τ is a
thread id, then the sequential instantiation p∗(τ) is a sequential program built by aug-
menting every thread-local variable v in p by the thread id, giving v(τ).
We de�ne a sequential instantiation in an analogous manner also for terms. �

4.1.5 ProgramPositions, Control Variables, and�read Con�gurations

Until now, we have dealt with syntactic programs, which are just templates for threads
to execute. Now we introduce means to describe which threads are executing a pro-
gram, and where exactly each thread is at any given moment. For this, we number all
atomic sub-programs in a program (statements and atomic blocks) from le� to right,
starting with one. We call these numbers the positions of the program.�eir intuitive
meaning is that if a thread is at a certain position, it is about to execute the correspond-
ing atomic statement when it is next scheduled to run. We will refer to the statement
at position i in a program p as p(i).
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Every position i is associated with a control variable pos(i), which is a set-valued
variable, not occurring in programs.�e control variable lists exactly the tids waiting
to be scheduled at the resp. position. Together, the control variables specify the thread
con�guration.

De�nition 4.8 (�read con�guration). A thread con�guration for a program p is a
non-rigid function symbol pos:

posp∶{1, . . . , size(p)}→2T .
In order not to clutter notation, we will omit the program index and just write pos.
�e program it refers to is always clear from the context. �

Example 4.9 (�read con�guration notation). In this example we assume that thread
ids are integers.�en, ({3, 17, 5}, {}, {2}) is an example of a con�guration of size 3.
A con�guration of size n is compatible with programs that have n positions.
We write (compatible) pairs of thread con�gurations and programs by inlining

the values of the control variables within the program. For example, the programv=(x<10); if (v) {a=10; x=a+1}
together with the con�guration ({5}, {3, 4}, {1}, {2}), where four threads are active
and one has already terminated, is written as{5}v=(x<10); if (v) {{3,4}a=x;{1}x=a+1;}{2} .
On the formula level, if U is an update and c̄∣p is a program with an inlined thread
con�guration, the formula

U⟨c̄∣p⟩ϕ
is shorthand for {pos(1) ∶= c1 ∣∣ . . . ∣∣pos(n) ∶= cn}U⟨p⟩ϕ .

�

Note 4.10 (Disjointness of control variable values). In general, we expect to deal only
with disjoint values of control variables: every thread can be at only one place at the
same time. Nonetheless, a formula can describe a state where this is not true. To avoid
complications, we assume the following semantics for this case. If two control vari-
ables pos(i) and pos( j) (for i /= j) have overlapping values A and B, i.e., A∩B /=∅, then
the semantics of a program with this con�guration is the same as of a program in a
state where pos(i) has the value A∖ B and pos( j) has the value B ∖ A. �

De�nition 4.11 (�reads in a program).�e set of threads in a program Tids(p) is
Tids(p)= n⋃

i=1
pos(i)

for a program p with n atomic positions. Technically, this set is state-dependent, but
our programs can neither create nor destroy threads. �
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4.1.6 �e Scheduler

De�nition 4.12 (Scheduler). For each program p, the scheduler is (modeled by) the
prede�ned (⇒Note 4.2) non-rigid function (constant) symbol

schedp∶→T ∪ {⊥} ,
which says which thread is to run next in a given state. In order not to clutter notation,
we will omit the program index and just write sched in the future.�e program to
which the scheduler function refers is always clear from the context. �

�e interpretation of sched depends, in general, on program state, even though
we try tominimize this dependency in our program semantics. Di�erent models, fur-
thermore, may interpret this function di�erently and, thus, have di�erent schedulers.
�e value that sched returns must, of course, be compatible with other components of
the state, i.e., the program variables and the control variables. To express this we �rst
de�ne what it means for a thread to be enabled.

De�nition 4.13 (Statement Enabledness).We introduce a non-rigid predicate sym-
bol enabled(s, t) capturing when a thread t is enabled to execute a concurrent state-
ment s. We declare the predicate prede�ned (⇒Note 4.2)), and its values are given by
the following table:

Statement s Enabledness condition enabled(s, t)stop false

assignment true

atomic block true

o.<lok>() o(t).<lokount>=0 ∨ o(t).<lokedby>= t
o.<unlok>() true

�

De�nition 4.14 (�read Enabledness). �e following non-rigid predicate symbol
captures when a thread t is enabled in a program p (we will, again, omit this program
index in the future).�e predicate is prede�ned (⇒Note 4.2) with the semantics con-
strained by the axiom:

enabledp(t)=⎧⎪⎪⎨⎪⎪⎩
enabled(s, t), if t ∈Tids(p),
false, otherwise,

where s is the statement at which t is waiting to be scheduled. Per Note 4.10 there is
at most one such statement. If there is none, the predicate evaluates to false. �

We now state the scheduler axioms.
1. �e scheduler may only schedule existing threads. Which threads “exist” is given
by the control variables of the state for the program at hand:

sched∈Tids(p) . (4.1)
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2. �e scheduled thread must be enabled. When a thread is enabled is de�ned in
Def. 4.14. At this point the scheduler depends upon actual program variables.

sched= t ∧ t≠⊥Ð→enabled(t) (4.2)

3. If no thread is enabled, the scheduler must return ⊥. �is is the case when the
program has terminated or entered deadlock.

sched=⊥←→
∀t. t ∈Tids(p)Ð→¬enabled(t) (4.3)

4. �e scheduler is dependent upon a scheduling seed. A problem for a deterministic
scheduler model is the possibility that a program returns to a previously visited
state (a kind of déjà vu). In this case, it would be unreasonable to expect that
the scheduler run the same thread as last time. �is situation could occur, for
instance, if our programming language allowed non-atomic loops.
To keep ourmodel general, we introduce yet another control variable: the schedul-
ing seed σ .�e semantics of the programming language would use σ to guarantee
that as long as a program is running, it never passes the same state twice. For
non-atomic loops this would mean making σ a ghost loop counter. Please note,
that our programming language is already restricted in such a way as to have the
no-déjà vu property without resorting to an explicit seed.
�ere is yet another potential reason to have an explicit seed.�e seed makes it
possible to relate two di�erent runs of the same program. An example of this is
the atomicity criterion from Section 7.1:

∀v .(⟨α β ω⟩(x=v)Ð→∃s.{σ ∶= s}⟨α ≪β≫ ω⟩(x=v)) ,
Here the seed is existentially quanti�ed, and we take this opportunity to further
explicate its semantics.�e scheduler behavior is not only dependent on the seed,
but it is dependent in such a way that it is possible to induce any legal schedule
by selecting the right seed. In other words, the seed variable is a substitute for
quantifying over schedulers, which is not possible directly in our logic.
In practice, however, the seed feature is rather esoteric. In the following, we omit
the seed from our further considerations.

In general, this is already everything we assume about a scheduler. Fairness2 or other
scheduler properties are not built into our model. Such properties can, however, be
speci�ed by adding further axioms restricting the function sched.

4.1.7 Formulas

�e set of formulas is de�ned similar to JAVA CARD DL (⇒ Def. 2.8).�e only di�er-
ence concerns modalities. MODL de�nes two concurrent and two sequential kinds of
modal operators.

2 It should be noted that JAVA itself is only “statistically fair”.
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De�nition 4.15 (Formulas of MODL).We amend the de�nition of formulas from
JAVA CARD DL (⇒Def. 2.8) as follows:
For each concurrent program p and every formula ϕ, ⟨p⟩ϕ (the concurrent “dia-

mond” modality) and [p]ϕ (the concurrent “box” modality, which is a shorthand for
¬⟨p⟩¬ϕ) are formulas.
If p is a sequential program and ϕ a formula, then ⟨p⟩ϕ (the sequential “diamond”

modality) and [p]ϕ (the sequential “box” modality, which is a shorthand for ¬⟨p⟩¬ϕ)
are formulas. �

Intuitively, a diamond formula ⟨p⟩ϕ (resp. its concurrent counterpart ⟨p⟩ϕ)means
that the program p in the diamond must terminate (resp. all threads must terminate)
and a�erwards ϕ has to hold.�e meaning of a box formula is the same, but termi-
nation is not required, i.e., ϕ must only hold if p terminates.�e formula ψÐ→[p]ϕ
has the same meaning as the Hoare triple {ψ}p{ϕ}.

4.2 Semantics of MODL

Unsurprisingly, we useKripke structures (introduced in Sect. 2.4) as semantic domains
to interpretMODL formulas.�e semantics of terms and updates remains unchanged
(Sect. 2.4.3 and 2.4.2), while the semantics of formulas is modi�ed from Sect. 2.4.4 to
introduce new concurrent modalities.�e major part of this section concentrates on
de�ning the semantics (transition relation ρ) of the concurrent and sequential pro-
gramming languages of MODL.

De�nition 4.16 (State variation). If s ∈S is a state and u∈Updates is an update, then
s′= sJuK is a state variation (i.e., also a state). Formally, s′=(valsu)(s).�is means that
s′=(D, δ , I′) is identical to s=(D, δ , I) except for the interpretation mapping, which
is changed according to the update u. �

4.2.1 Semantics of Sequential Programs

As in JAVA CARD DL (⇒ Def. 2.13), the semantics of sequential programs is given by
a transition relation on states ρ1(p)⊆S2 , for any valid sequential program p. Since
programs are deterministic, the relation is actually a partial function: ρ1(p)∶S→S.

De�nition 4.17 (Semantics of sequential programs). �e semantics of sequential
programs ρ1(p) is the smallest relation satisfying the following conditions. It does
not depend on the scheduler.

(Stop)
ρ1(stop)= id

(Atomic block)
ρ1(≪p≫)=ρ1(p)
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(Assignment)(s, s′)∈ρ1( f (t1 , . . . , tn)= t) i� the statement f (t1 , . . . , tn) ∶= t interpreted as a JAVA
assignment does not throw an exception3 and s′= sJ f (t1 , . . . , tn) ∶= tK.

(Sequential composition)(s, s′)∈ρ1(pq) i� (s, s′′)∈ρ1(p) and (s′′, s′)∈ρ1(q) for some state s′′.
(Conditional)(s, s′)∈ρ1(if (v(t)) {p} else{q}) i� either

(1) vals(v(t))=TRUE and(s, s′)∈ρ1(p), or
(2) vals(v(t))=FALSE and (s, s′)∈ρ1(q).

(Loop)(s, s′)∈ρ1(while(v(t)) {p}) i� there is an n ∈N and there are states s0 , . . . , sn
with s= s0 and s′= sn such that
(1) for 0≤ i<n, vals i (v(t))=TRUE and (s i , s i+1)∈ρ1(p), and
(2) valsn(v(t))=FALSE.

(Lock acquire)(s, s′)∈ρ1(o(t).<lok>()) i� either
(Case 1: the lock is free)

vals(o(t).<lokount>)=0 and vals(o(t).<lokedby>)=⊥
or

vals(o(t).<lokount>)>0 and vals(o(t).<lokedby>)=vals(t)
and, in either case,

s′= s
s
o(t).<lokount>∶=o(t).<lokount>+ 1 ∣∣

o(t).<lokedby>∶= t {

or
(Case 2: the lock is taken)

vals(o(t).<lokount>)>0 and vals(o(t).<lokedby>)≠vals(t) while
s′= s.

(Lock release)(s, s′)∈ρ1(o(t).<unlok>()) i� either
(Case 1: lock depth not yet exhausted)

vals(o(t).<lokount>)>1
vals(o(t).<lokedby>)=vals(t)
s′= sJo(t).<lokount>∶=o(t).<lokount>− 1K

or
3 Wedonot give a formal de�nition, sincewewant to avoid formalizing heremajor portions of
the JLS. In practice, when an exception is thrown is exhaustively formalized by the sequential
KeY calculus.
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(Case 2: lock depth exhausted)

vals(o(t).<lokount>)=1
vals(o(t).<lokedby>)=vals(t)
s′= s

s
o(t).<lokount>∶=0 ∣∣
o(t).<lokedby>∶=⊥ {

�

4.2.2 Semantics of Concurrent Programs

�e semantics of concurrent programs is given by a transition relation on states
ρ(p)⊆S2 , for any valid concurrent program p. As explained previously, even our
concurrent programs are deterministic (by means of an underspeci�ed determinis-
tic scheduler).�us, this relation is a partial function: ρ(p)∶S→S. We will de�ne ρ
below.
To make specifying the semantics of if-statements easier we assume that every

thread steps through both the then- and the else-part of all if-statements. Yet the
thread can only change the state if it is in the “right” part and executes NOPs oth-
erwise.�e path condition tells us if we are in the right part.

De�nition 4.18 (Path condition of position in program). Let k be a position of an
atomic sub-program in a non-atomic program p. Let this position occur within the
scope of n≥0 (nested) if-statements in their then- or else part. Let v1 , . . . , vn be the
conditions of these if-statements.
Since, by de�nition, the local variable vi does not occur in the then- or else-part of

the ith if-statement, its value is not changed during the execution of the if-statement
a�er it has been evaluated.
We de�ne the path condition of k in p as the formula:

path(k , p, tid)=B1 ∧ . . . ∧ Bn ,

where

B i =
⎧⎪⎪⎨⎪⎪⎩
(vi(tid)=TRUE), if k is in the then-part of the ith if-statement

(vi(tid)=FALSE), if k is in the else-part.
�

�us, a thread t will execute the atomic program at k within p i� path(k , p, t) holds.
Example 4.19. �e path condition of the statement l=r; in the programif (a) {if (b) {} else {l=r;}} else {}
for a thread t is a(t)=TRUE ∧ b(t)=FALSE .

�
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Our next goal is to de�ne the semantics of concurrent programs ρ(p).�e base for
this is the semantics of sequential programs ρ1(p).Weuse it to describe the �rst step in
the execution of a concurrent program, which is identi�ed by the scheduler function.
All further steps of the concurrent program are handled by recursively repeating the
process.

De�nition 4.20 (Semantics of concurrent programs).�e semantics ρ(p) of a con-
current program p is inductively de�ned as the smallest relation such that:

• (s, s)∈ρ(p) if no thread of p is enabled in s, i.e., sched=⊥ in s.
• (s, s′)∈ρ(p) if some thread of p is enabled in s , and
(1) sched=tid in s
(2) tid∈pos(i) in s (there is always exactly one such i, cf. Note 4.10)
(3) q is the atomic sub-program at position pos(i) in p
(4) s⊧path(i, p, tid),
(5) (s, s′′)∈ρ1(q∗(tid)) for some state s′′
(6) vals′′(pos(i))=vals(pos(i))∖ {tid} and

vals′′(pos(i + 1))=vals(pos(i + 1)) ∪ {tid}
(7) (s′′, s′)∈ρ(p)

• (s, s′)∈ρ(p) if some thread of p is enabled in s , and
(1)-(3) as above
(4) s /⊧path(i , p, tid),
(5) there is a state s′′= sJpos(i) ∶=pos(i)∖ {tid} ∣∣pos(i + 1) ∶=pos(i + 1)∪ {tid}K
(6) (s′′, s′)∈ρ(p) �

4.2.3 Semantics of Formulas

Now, we can de�ne the semantics of formulas with modalities in a way similar to
Def. 2.21.

De�nition 4.21 (Semantics of formulas).

(Modalities with concurrent programs)
s⊧⟨p⟩ϕ i� (s, s′)∈ρ(p) for some state s′ with s′⊧ϕ.

(Modalities with sequential programs)
s⊧⟨u⟩ϕ i� (s, s′)∈ρ1(u) for some state s′ with s′⊧ϕ.
We say that a Kripke structure is amodel of a formula ϕ i� s⊧ϕ is true in all states s

of that structure. A formula ϕ is valid if all Kripke structures are a model of ϕ. �
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“If it can be programmed, it can be veri�ed.”�is adage was not only a constant en-
couragement in the development of this proof system, but also a quite concrete guid-
ance. Practice makes it clear that programmers do not reason about all possible in-
terleavings when programming a multi-threaded application. �ey rather consider
equivalence classes, since many interleavings are not signi�cantly di�erent. A veri�-
cation system can and should make use of this circumstance, and a crucial factor in
building the equivalence classes is thread symmetry.
In this chapter we re�ne the notion of thread con�guration and the corresponding

schedulermodel given in the previous chapter.�e re�nedmodel allows us to summa-
rize many symmetric program executions in classes, to reason about an unbounded
number of threads, and altogether to verify multi-threaded programs with a feasible
e�ort.�e chapter is concluded by combinatorial results relevant to multi-threading.

5.1 Do Not Enumerate—Describe!

�e logic presented in the previous chapter already gives a complete account of multi-
threading for the chosen language fragment and even allows symbolic execution of
programs. It has two de�ciencies though:

• �e threads involved are explicitly enumerated, even when the concrete ids are
actually not important.�is circumstancemakes it impossible tomake statements
about an unbounded (�xed but unknown) number of threads.

• Transitions are always totally ordered (resulting in proof branching), even if they
are independent. Consider two threads τ1 and τ2 that are ready to be scheduled at
the same position. Under the enumeration scheme, we have to perform a case dis-
tinction, which thread will run �rst, even if this distinction is not important later
in the proof. Since we are dealing with symbolic data, this distinction is almost
never important.�e up-front distinction is ine�cient and—again—prevents us
from verifying programs with an unbounded number of threads.
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To overcome these obstacles, we have developed a more re�ned logic where con�g-
urations are not enumerated but described algebraically. E�cient laws for reasoning
about these descriptions complete the picture.�e basis for the e�ciency gain is sym-
bolic thread symmetry.

Extending Symmetry Reduction

(a) concrete data

(b) symbolic data

Figure 5.1. Explored thread trajectories in a program

Symmetry reduction is a well-known idea that di�erent threads with the same
properties need not be distinguished. Most model-checking frameworks implement
some sort of symmetry reduction to prune the state space.�is feature is described
prominently, for instance, in [Robby et al., 2003c] (the Bogor tool) and [Yahav, 2001]
(on-the-�y model-checking with TVLA). However, detecting symmetries can be ex-
pensive, and most tools used in practice only detect symmetry when several threads
have exactly the same concrete local data and program counter. Such a situation is as
well as not present in the scenario depicted in Figure 5.1(a).
In a deductive veri�cation system we can give the idea of symmetry reduction a

new twist. We want to identify not just threads with the same local data, but threads
with similar proof shapes. Indeed, when executed symbolically, most threads of the
same thread class have similar proof shapes (Figure 5.1(b)), as symbolic execution
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explores all possible paths through the code.�e number of such paths is �nite and
relatively small; it is bounded by the shape of the program text.1

Having paid the price of sequential symbolic execution in case distinctions, we
might now aswell reap the bene�ts in the concurrent case.We can—to a large extent—
eliminate the necessity to consider di�erent orderings of threads that have reached the
same position within the program.

Example 5.1 (Symbolic symmetry reduction). Consider two threads τ1 and τ2 that are
ready to execute the statementif (l==0) α else β ,

where l is a thread local variable. In the proof schematically shown in Figure 5.2(a),
the distinction whether τ1 or τ2 runs �rst is performed up-front. Figure 5.2(b) shows
how symmetry reduction allows to postpone this choice by hiding it in the scheduler
function. Here π1(1) is the id of the thread to run �rst, and the following proof is
implicitly quanti�ed over all possible values of π1(1). In most cases this quanti�cation

⋯ ⋯ ⋯ ⋯

τ 1 r
uns
�rs
t τ2 runs �rstl(τ1)=0 l(τ1) /=0 l(τ2)=0 l(τ2) /=0

(a) without symmetry reduction

⋯ ⋯

l(π1(1))=0 l(π1(1)) /=0
(b) with symmetry reduction

Figure 5.2. Symbolic execution trees for two threads τ1 and τ2 ready to execute the statementif (l==0) α else β

can be easily eliminated by applying algebraic laws about permutations and similar
reasoning. In these cases symbolic symmetry reduction is successful. Otherwise, one
or several case distinctions have to be performed on π1 (1). Since no information about
thread ids is ever removed, no unsoundness is introduced in the process. �

Symmetry reduction eliminates proof complexity caused by di�erent possible or-
derings of threads at one interference point. To deal with the number of interference
points, one applies standard techniques for identifying atomic regions based on lock-
ing and data encapsulation. To deal with the possibly unbounded number of threads
in the system (“unbounded concurrency”), one applies induction. Together, the three
components (symmetry reduction, atomicity, induction) make deductive veri�cation
of concurrent systems feasible.

1 Remember that we only consider atomic loops, which can be compressed into a single (com-
plex) computation step.
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Expressing Unbounded Concurrency

In our program model we pretend that each thread linearly traverses the program:
�ere is no jumping back (except within an atomic loop), and each thread visits each
position at most once (never, if it gets stuck on its way in an atomic loop or trying to
acquire a lock).�is means, however, that threads can end up in the “wrong” branch
of an if-then-else statement. To preserve the original semantics of the program, we
arrange that the state is not changed by the program while its control �ow is in the
wrong place.
We have now “forced” each thread to visit each program position at most once.

Assuming threads with tids 1, . . . , n, it is clear that for every position i, there is a
permutation πi ∶{1 . . . n}→{1 . . . n} that describes the order in which the threads are
scheduled at this position (should they reach it).
Given these permutations, it is su�cient to know how many threads are at each

position.�is �xes the exact con�guration as well and allows writing con�gurations
with m positions as (π0 , π1∶k1 , . . . , πm∶km), where π0 , . . . , πm are terms representing
the permutations and k1 , . . . , km are terms representing the number of threads.

Describing�read Con�gurations

De�nition 5.2 (�read con�guration).Con�gurations with explicit tids were intro-
duced in Def. 4.8. We now overload this term with the following de�nition. Unless
explicitly stated otherwise, in the following, all con�gurations refer to the following
formulation.
A thread con�guration for a program p is a family of non-rigid function symbols

π
p
i ∶N→T for i ∈{0, . . . , size(p)}

together with a non-rigid function symbol

posp∶{1, . . . , size(p)}→N .

πi is a permutation of the set of tids T , encapsulating the scheduler decisions at posi-
tion i. pos(i) is the number of threads currently available for scheduling at position i.

�

In order not to clutter notation, we will omit the program index and just write πi

and pos.�e program they refer to is always clear from the context. As before, we also
o�en present con�gurations as inlined within programs.�is time we limit ourselves
to the values of pos. Since we never deal with concrete values of πi , we omit them
when stating con�gurations and simply imply their existence.

Example 5.3. Consider a program of size four with 2, 3, 5 and 7 threads waiting at each
position respectively.�e thread con�guration of this program consists of the non-
rigid function pos (with pos(1)=2, pos(2)=3, pos(3)=5, pos(4)=7), and the �ve non-
rigid “permutation” functions π0 , . . . , π4 (whose values we do not know). Altogether
there are 17 threads, which we can represent as {π0(1), . . . , π0(17)}.
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If we concentrate on position 1, we can see that 3 + 5 + 7=15 threads have already
passed this position and the next one to execute will be the 16th in count. If we now
concentrate on position 2, we can see that 5 + 7=12 threads have already passed this
position and the next one to execute will be the 13th in count. �

De�nition 5.4 (Post(⋅)).For a given program p of size n (implied) and a position i≤n ,
we de�ne a prede�ned (⇒ Note 4.2) non-rigid function symbol Post(i) with the se-
mantics �xed by:

Post(i)=⎧⎪⎪⎨⎪⎪⎩
pos(i) if i=n, or if the statement at position i in p is stop
pos(i)+ Post(i + 1) otherwise.

�is is the number of threads of one thread class in p, which have already passed
position i in the current state. In absence of stop statements in p (i.e., if there is only
one thread class), the situation is simpler:

Post(i)=pos(i + 1) + . . . + pos(n) .
�

Example 5.5 (Example 5.3 continued). So, in our example Post(2)=5 + 7=12.�e next
thread scheduled at position 2 is the (Post(2) + 1)=13th thread. But exactly which one
is the 13th? Here the permutation functions come into play.�e exact tid of the thread
scheduled to run next at position 2 is given by π2(Post(2) + 1)=π2(13).�is way we
can talk concisely about thread orderings even if we don’t know them exactly. �

�e same way we can write con�gurations where the number of threads is not
a concrete number but a variable. �is very expressive form of writing allows us to
formulate rules that do not take the scheduling order into account, as it is hidden
inside the permutation functions. What we need for a complete calculus are then the
usual algebraic properties of permutations and axioms of their interplay.
Asmentioned above, the pos and the πi functions completely �x the thread lineup.

We now state exactly how, by de�ning the function posγwhich in any given state pro-
duces an enumerative con�guration in the sense of Def. 4.8.

De�nition 5.6 (Con�guration concretization). A concretization function (of size n)
is a prede�ned non-rigid function symbol

posγ∶{1, . . . , n}→2T
with the semantics �xed by

posγ(i)={πi−1(1), . . . , πi−1(Post(i − 1))} ∖ {πi(1), . . . , πi(Post(i))} .
�
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�e intuition behind this de�nition is the following.�e threads waiting at position i
are exactly those that have already passed the position i − 1, but excluding those that
have already moved on past i.

Example 5.7 (Example 5.3 continued).We now translate the four integers and the �ve
permutations from above into an enumerative 4-set con�guration:

⎛⎜⎜⎜⎜⎜⎝

posγ(1),
posγ(2),
posγ(3),
posγ(4)

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{π0(1), . . . , π0(17)} ∖ {π1(1), . . . , π1(15)},
{π1(1), . . . , π1(15)} ∖ {π2(1), . . . , π2(12)},
{π2(1), . . . , π2(12)} ∖ {π3(1), . . . , π3(7)},
{π3(1), . . . , π3(7)}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

Note 5.8 (Con�gurations in physics).Di�erent ways to formalize thread con�gurations
have their parallels in statistical mechanics, which studies con�gurations of particles
in discrete energy states. Under Maxwell-Boltzmann assumptions, the particles are
always distinguishable, while the Bose-Einstein con�gurations do not distinguish be-
tween particles in the same state.�read con�gurations with explicit tids have their
counterpart in the former, while the abstract con�gurations correspond to the the lat-
ter. �

5.2 New Scheduler Formalization

Since we are aiming towards identifying all threads that have reached a certain po-
sition within the program, we wish to decompose the scheduling function into two
components: the position choice functionP and the thread choice functions πi . In the
following we will be restating the important de�nitions of concrete MODL primarily
in terms of positions instead of in terms of threads.

�e main component of the new scheduler formalization is the position choice
function P . It returns the position from which the next thread will be scheduled in
the current state—or 0, if no enabled positions (⇒ Def. 5.9) remain.
Putting P together with the permutations introduced in the previous section, we

obtain the following decomposition of the scheduler function (for non-disabled con-
�gurations):

sched=πP(Post(P) + 1) . (5.1)

Position choice function characterization

In this section we state axioms for the position choice function, but �rst we need to
de�ne when a position is enabled. A position i is enabled in a con�guration i� its tid
set is not empty and its statement is enabled (⇒ Def. 4.13) for some thread at this
position.
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De�nition 5.9 (Position enabledness). We introduce a non-rigid predicate sym-
bol enabledp(i) capturing when a position i is enabled in a program p (which we will
omit as it is clear from the context). We declare the predicate prede�ned (⇒Note 4.2),
and its semantics is constrained by the following axiom:

enabled(i)=∃t. (t ∈posγ(i) ∧ (path(i , p, t)Ð→enabled(p(i), t))) .
�

Note 5.10. Note that for all statements except lock acquire the quanti�er can be triv-
ially eliminated.�e same applies in the common case that all threads try to acquire
the same lock (in absence of reentrant locking). �ese are exactly the cases of full
symmetry between threads.
For instance, considering an assignment, the enabledness condition becomes sim-

ply:
pos(i)>0 .

�

Having de�ned position enabledness, we now axiomatize the position choice
function. To achieve an adequate scheduler representation, the position choice func-
tion is subject to the following axioms:

• Only valid positions (or zero) are returned:

0≤P<size(p). (5.2)

�is axiome�ectively amounts to a disjunction over the positions of p , which dur-
ing the proof gives rise to a case distinction. Note that size(p) is never returned,
since the last position must be a stop, which is never enabled.

• �e non-zero values ofP are further restricted to the positions enabled in a given
con�guration:

P≠0Ð→enabled(P) . (5.3)

• P may only return 0 if no position is enabled:

P=0Ð→
∀i .(1≤ i<size(p)Ð→¬enabled(i)) . (5.4)

�read choice function characterization

Each thread choice function πi is in every state an injective mapping from N to the
set of tids T (we assume there are in�nitely many thread ids).�e injectivity is based
on the fact that no thread can pass the same position twice as we have ruled out non-
atomic loops. Formally:

πk(i)=πk( j) i� i= j . (5.5)
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While it is our goal to assume as little about the thread choice functions as possible,
in reality they are not completely arbitrary.�e thread choice function at position i
can only choose threads available at this position|

πi(Post(i)+ 1)∈posγ(i) . (5.6)

�is constraint ties the choice at position i to the choices made at previous positions.
Our calculus uses the axioms presented here to gather a constraint on the scheduler
while exploring the behavior of the program.

Note 5.11. For e�cient reasoning, the formula πi(Post(i)+1)∈posγ(i), which is short-
hand for

πi(Post(i) + 1)∈{πi−1(1), . . . , πi−1(Post(i − 1))} ∖ {πi(1), . . . , πi(Post(i))} ,
can be simpli�ed.�e subtracted term can be safely dropped if we recall injectivity
of πi . Together with (5.5) it is su�cient to demand that:

πi(Post(i)+ 1)∈{πi−1(1), . . . , πi−1(Post(i − 1))} .
�

Finally, the threads of di�erent thread classes are never confused. If there is a stop
statement at position b in a program, then

∀i , j, x , y.(i<b ∧ j≥b Ð→πi(x) /=π j(y)) .
New de�nition of program semantics

In parallel to Def. 4.20, we now state a new de�nition of program semantics.

De�nition 5.12 (Semantics of concurrent programs).�e semantics ρ(p) of a con-
current program p is inductively de�ned as the smallest relation such that:

• (s, s)∈ρ(p) if no position of p is enabled in s, i.e.,P=0 in s.
• (s, s′)∈ρ(p) if some position of p is enabled in s , and
(1) tid=πP(Post(P) + 1) in s
(2) q is the atomic sub-program at position P in p
(3) s⊧path(P, p, tid),
(4) (s, s′′)∈ρ1(q∗(tid)) for some state s′′
(5) vals′′(pos(P))=vals(pos(P)) − 1 and

vals′′(pos(P + 1))=vals(pos(P + 1)) + 1
(6) (s′′, s′)∈ρ(p)

• (s, s′)∈ρ(p) if some position of p is enabled in s , and
(1)-(2) as above
(3) s /⊧path(P, p, tid),
(4) there is a state s′′= sJpos(P) ∶=pos(P) − 1 ∣∣pos(P + 1) ∶=pos(P + 1) + 1K
(5) (s′′, s′)∈ρ(p) �
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5.3 Combinatorial E�ects of Symmetry Reduction

A calculus based on symbolic execution uses case distinctions to explore di�erent
program schedules. �e number of cases is one measure of the calculus’ e�ciency.
�is number is roughly equal to the number of thread interleavings considered.
Our employment of extended symmetry reduction allows us not to distinguish

between threads with the same program counter and thus reduce the number of in-
terleavings considered (at the price of having to reason about permutations). One
question to be asked is how high a reduction we achieve. In the following we survey
combinatorial results for multi-threaded programs and provide statistics on the num-
ber of interleavings (without symmetry reduction), the number of con�gurations and
the number of interleavings when employing symmetry reduction.

Counting�read Interleavings

Howmany di�erent interleavings can a multi-threaded program exhibit? A total of T
threads: t1 , . . . , tT , each with s i , 1≤ i≤T atomic statements produces:

I(s1 , . . . , sT)=(s1 + . . . + sT

s1 , . . . , sT
)

interleavings.�ismultinomial coe�cient [Cohen, 1978] counts the number of ways to
put∑s i unique balls into T boxes, where each box can hold s i balls. Boxes correspond
to threads in our model, while balls are numbered 1 to∑s i and represent all the steps
in the common schedule.

�is number can be computed in the following way, which models successive �ll-
ing of the boxes:

I(s1 , . . . , sT)=
(s1 + s2 + . . . + sT

sT
) . . .(s1 + s2 + s3

s3
)(s1 + s2

s2
)= (s1 + . . . + sT)!

s1!⋯sT !
.

In the uniform case, where each of T threads has S statements, the number of inter-
leavings is:

I(S , . . . , S´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
T

)= (ST)!(S!)T .

Counting the Number of�read Con�gurations

First, we want to count con�gurations where threads are always distinguishable. A
program with S atomic statements requires a thread con�guration of size S + 1.�e
number of such thread con�gurations with identity is:

(S + 1)T ,
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since each unique thread can choose from S+1 positions independently.�is is known
as the number of redundant permutations in combinatorial theory.
Now, we turn to the case where we do not distinguish threads with the same pro-

gram counter. For this we de�ne ⟨S
T
⟩ as the number of ways to put T indistinguishable

balls into S labeled boxes of unlimited size (redundant combinations). It is known [Co-
hen, 1978,�eorem 15] that

⟨S
T
⟩=(S + T − 1

T
) .

�e total number of thread con�gurations without identity of size S + 1 is thus:

⟨S + 1
T

⟩=(S + T

T
) .

Furthermore, for any given k⩽S, the number of con�gurations with k enabled posi-
tions is:

∣S , T
k
∣=(S

k
)⟨ k + 1
T − k

⟩=(S
k
)(T

k
) .

�e key to this calculation is selecting k positions and putting a ball into each of them
�rst. �e rest of the balls can be distributed between these k selected and the last
position.

Counting the Cases Considered by the MODL Calculus

Finally, we consider what e�ect symmetry reduction has on the number of interleav-
ings and thus on the case distinctions performed by the calculus.�is counting prob-
lem is closely related to counting problems over other domains such as lattice walks,
Dyck paths, Young tableaux, etc. [OEIS A060854, 2008].
Let us consider a programof S statements and T threadswithout identity. Further-

more, we abstract from data, i.e., assume that all path conditions are true. In this case,
program executions (interleavings) can be modeled as S-dimensional lattice walks
(with positive unit steps) from (0, . . . , 0) to (T , . . . , T) such that all the points on the
walk satisfy x1⩾x2 ⩾⋯⩾xS ⩾0.

�e number of such lattice walks is known to be equal to the multidimensional
Catalan number [OEIS A060854, 2008] CS ,T , where

Cs ,t = 0!1!⋯(t − 1)!
s!(s + 1)!⋯(s + t − 1)!(st)! .

In particular, for s=2 (or t=2, as Cs ,t =Ct ,s), C2,t corresponds to the “regular” Catalan
numbers [OEIS A000108, 2008].
Asymptotically, the Catalan numbers grow “only” exponentially:

C2,n ∼
4n√

πn(n + 1) .
�is can be derived from the Stirling approximation of n!.

�e �rst few multidimensional Catalan numbers are charted in Table 5.1.
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@
@@s
t
1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1

2 1 2 5 14 42 132 429 1430

3 1 5 42 462 6006 87516 1385670

4 1 14 462 24024 1662804 140229804

5 1 42 6006 1662804 701149020

6 1 132 87516 140229804

7 1 429 1385670

8 1 1430

9 1

Table 5.1.Multidimensional Catalan numbers Cs ,t

Conclusion

�e above calculations show that symmetry reduction lowers the number of inter-
leavings that have to be considered from superexponential to “just” exponential.�e
number of case distinctions to be made remains a�er all too high for using the cur-
rentMODL calculus as amodel checking tool.�is, however, is not detrimental to our
goals, as the main advantage of symmetry reduction remains. It opens the possibility
to make logical assertions that are parametric on the number of threads (without re-
quiring explicit thread enumeration), thus paving the way to using induction on this
parameter.
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A Calculus for MODL

Most of our lives are about proving something,
either to ourselves or to someone else.

6.1 Calculus Overview

�e MODL calculus is built from the following new components:

A. rules for symbolic execution of concurrent programs (interleaving and symmetry
reduction engine) (⇒ Sect. 6.3)

B. rules for reasoning about scheduling functions (permutations) produced byCom-
ponent A (presented as axioms in Sect. 5.2)

C. concurrent invariant rule (not needed for completeness) (⇒ Sect. 6.5)
D. unfolding rules for translating JAVA to MODL (⇒ Sect. 6.2)

as well as the following pre-existing components of the sequential calculus (presented
in Sect. 2.5.6):

1. FOL rules, reasoning about equality and arithmetics, induction
2. rules for symbolic execution of atomic sequential program fragments produced
by Component A

3. invariant rule for sequential loops
4. method contract rules (further modularization)
5. rules for simpli�cation and application of updates, which are produced by Com-
ponent 2 (e�cient aliasing treatment)

�e Components 1–5 have been borrowed (with very minor modi�cations) from the
stock KeY system.
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6.2 Program Unfolding: Translating JAVA to MODL

�e calculus given later in this chapter operates on MODL programs. Here we de-
scribe a mapping from JAVA programs satisfying the requirements given in the intro-
duction to MODL.�e mapping is such that the JAVA program and its counterpart in
MODL perform the same state transition: if started in the same state, both will either
terminate in the same state or not terminate at all.�us, if the MODL program can
be veri�ed, then the original JAVA program is correct as well.
Translating JAVA to MODL is a two-step process. First, we completely unfold the

JAVA program using a special rule set in KeY.�e result is a more �ne-grained JAVA
program that is semantically equivalent to the original.�en, we use a simple trans-
formation from the unfolded program into MODL.

Unfolding the JAVA program

�e basis for the unfolding process is the calculus for sequential JAVA programs de-
scribed in Sect. 2.5.5.
For a concurrent JAVA program α, the unfolded JAVA program α′ satis�es the fol-

lowing conditions:

1. α′ is trace-equivalent to α (w.r.t. vocabulary of α)
2. all occurring expressions are in normal form, i.e., it is no longer possible to factor
out subexpressions by means of fresh local variables

3. each assignment is atomic (i.e., updates at most one heap location)
4. the conditions of if-statements and loops are fresh local variables
5. the conditions of if-statements do not occur in the then- or else-part of the state-
ment

6. method calls are inlined, if necessary together with extra conditionals to simulate
dynamic binding.

To achieve this, we utilize the rules that are already a part of the sequential KeY cal-
culus. Examples of sequential unfolding are given in Sect. 2.5.5.�ese rules introduce
fresh local variables and additional assignments. Examples of concurrent program
unfolding are given in Table 6.1. Furthermore, instance creation is already modeled
by assignment to ghost �elds in the KeY calculus, and method implementations are
inlined.
We have manually inspected the KeY rule base identifying the rules that per-

form the unfolding. Syntactically, these rules can be very closely approximated as
the rules that match programs, but do not produce updates or case distinctions.
For instance, the unfolding rules include the rule ifElseUnfold, but not the rule
ifElseSplit (⇒ Sect. 2.7.2). Minor �ne-tuning was subsequently performed to ensure
the atomicity condition of assignments. We have also checked that no rules “swallow”
intermediate states, i.e., perform optimizations like replacing i++;i--; by a NOP.
�e resulting rules were then pooled in a special unfolding strategy of the prover.



6.3 �e Basic Rules of Concurrent Execution 81

JAVA statement unfolded formo.a=u.a++; v=u.a; u.a=v+1; o.a=v;if (o.a>1) {α} else {β} v=o.a>1; if (v) {α′} else {β′}while (o.a>1) {α} v=o.a>1; while (v) {α′ v=o.a>1;}synhronized(o) { α }† o.<lok>(); α′ o.<unlok>();v is in each case a fresh local variable of appropriate type
†�e correct way to unfold a synchronized block is actuallytry {o.<lok>(); α} finally {o.<unlok>();},
but since we do not allow catching exceptions at the moment,

we are using a simpler version.

Table 6.1. Examples of unfolding JAVA programs

Translating unfolded JAVA into MODL

A�er the programhas been completely unfolded, it almost satis�es the syntax require-
ments ofMODL.�e biggest missing piece is the atomicity requirement for loops.�e
user must declare code sections containing loops as atomic. More atomic sections can
be introduced in order to improve proof performance. In both cases, one needs to
carry out further justi�cation (⇒ Sect. 7.1). Finally, it remains to compose di�erent
thread classes by means of stop statements, add initial thread con�gurations and, in
general, formulate the proof obligation.

6.3 �e Basic Rules of Concurrent Execution

�e calculus presented in the following makes extensive use of the axioms given in the
previous two chapters.�e axioms are the constraints on the interpretation of prede-
�ned functions and predicates given in their de�nitions.�ese axioms can be added
to the antecedent of a proof goal at any time. Among symbols subject to axioms are
enabledness predicates (⇒ Def. 5.9), path conditions (⇒ Def. 4.18), scheduler func-
tions (⇒ Sect. 5.2), etc.
Figure 6.1 shows themain rule of theMODL calculus.�e rule shows how to sym-

bolically execute any statement that is not a concurrency primitive. In the rule, α and
ω denote unchanged program parts, and i is the position of the executed atomic state-
ment S (in the overall program p). S∗(tid) is the sequential instantiation (⇒ Def. 4.7)
of S for the currently running thread tid, which is an abbreviation for:

tid=πi(Post(i)+ 1) .
�e formula path(i , p, tid) is the path condition (⇒Def. 4.18) of the statement S in p
for thread tid. P is the position choice function, and the �rst premiss encodes the
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step

Ô⇒P= i

path(i , p, tid)Ô⇒⟨[S∗(tid)]⟩⟨[α{n−1}S{k+1}ω]⟩ϕ
¬path(i , p, tid)Ô⇒ ⟨[α{n−1}S{k+1}ω]⟩ϕ

Ô⇒⟨[α{n}S
↑

position i in p

{k}ω]⟩ϕ
Figure 6.1.�e concurrent symbolic execution rule

scheduler decision to schedule a thread at position i next. Since the scheduler behavior
is in general unknown, this rule is usually applied a�er a case distinction over possible
values of P.�ese are, in turn, dictated by the scheduler axioms (⇒ Sect. 5.2).
A�er applying the step rule, the sequential program S∗(tid) has to be tackled by

the rules of the sequential KeY calculus. Eventually, it will be reduced to a series of
updates and case distinctions.
Finally, if no position is enabled in a con�guration, the program does nothing and

the modality can be removed altogether.�e following rule applies:

emptyprogram
Ô⇒P=0 Ô⇒ϕ

Ô⇒⟨[p]⟩ϕ
A Simple but Complete Veri�cation Example

�e following example is popular in the �eld (e.g., [Abadi et al., 2006]), since it already
exhibits a large part of issues inherent to thread-based concurrency.

Example 6.1. Consider a �nancial transaction system that processes concurrent in-
coming payments for an account. We wish to establish that all payments end up de-
posited, regardless of their number and the order in which the threads are scheduled.
�is can be expressed by the following proof obligation, where sum is a static variable
and e is a thread-local variable containing the payment amount.

∀n.{sum ∶=0}⟨{n}≪sum=sum+e;≫{}⟩(sum= n∑
i=1

e(π0(i))) (6.1)

Note that for presentation purposes we have abused the programming language
by writing an assignment with two heap accesses.�is shorthand is permissible here,
since the assignment is protected by an atomic block.�is protection ensures that the
assignment a=sum+e;sum=a; (as the above is properly written) does not lead to an
atomicity failure (sometimes known as “race”).
As the �rst step of the proof, we eliminate the universal quanti�er from the

conjecture, replacing n by a Skolem constant n0.�en we apply the induction rule
natInduction (⇒ Sect. 2.6.4). �e induction hypothesis is that n0 − k transactions
have been completed, while k remain (k is the induction variable, 0≤k≤n0):
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{sum ∶= n0−k∑
i=1

e(π1(i))}⟨{k}≪sum=sum+e;≫{n0−k}⟩(sum= n0∑
i=1

e(π0(i)))
Step case

Now we have to prove that the above holds for k + 1 transactions, i.e.:

{sum ∶=n0−k−1∑
i=1

e(π1(i))}⟨{k+1}≪sum=sum+e;≫{n0−k−1}⟩(sum= n0∑
i=1

e(π0(i)))
We apply the step rule once.�ere is only one position and thus one relevant per-
mutation, namely π1.�e position is enabled (as k + 1>0), and there is indeed only
one possible choice P=1 (per Axioms (5.2) and (5.3) on page 73). Since there are no
if-statements, the path condition is simply true.�e only remaining goal is thus:

{sum ∶= n0−k−1∑
i=1

e(π1(i))}⟨sum=sum+e;∗(π1(n0−k))⟩
⟨{k}≪sum=sum+e;≫{n0−k}⟩(sum= n0∑

i=1
e(π0(i)))

We expand the de�nition of sequential instantiation. Only the thread-local variable e
is a�ected:

{sum ∶= n0−k−1∑
i=1

e(π1(i))}⟨sum=sum+e(π1(n0 − k));⟩
⟨{k}≪sum=sum+e;≫{n0−k}⟩(sum= n0∑

i=1
e(π0(i)))

We execute the sequential instantiation of the assignment symbolically using the se-
quential assignment rule. �is generates the update {sum ∶=sum+ e(π1(n0 − k))}.
We have:

{sum ∶= n0−k−1∑
i=1

e(π1(i))}{sum ∶=sum+ e(π1(n0 − k))}
⟨{k}≪sum=sum+e;≫{n0−k}⟩(sum= n0∑

i=1
e(π0(i)))

Update simpli�cation yields:

{sum ∶= n0−k∑
i=1

e(π1(i))}⟨{k}≪sum=sum+e;≫{n0−k}⟩(sum= n0∑
i=1

e(π0(i)))
Now, the induction hypothesis for k applies, and the step case of the induction is
closed.
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Base case

�e base case k=0 looks like this:

{sum ∶= n0∑
i=1

e(π1(i))}⟨{0}≪sum=sum+e;≫{n0}⟩(sum= n0∑
i=1

e(π0(i)))
�ere are no enabled threads le�, so the modality with the program can be removed
(rule emptyprogram), leaving to prove:

{pos(1) ∶=0 ∣∣pos(2) ∶=n0}{sum ∶= n0∑
i=1

e(π1(i))}(sum= n0∑
i=1

e(π0(i)))
A�er applying the inner update the goal is:

{pos(1) ∶=0 ∣∣pos(2) ∶=n0}( n0∑
i=1

e(π1(i))= n0∑
i=1

e(π0(i)))
�e sum equality follows from commutativity of addition, the injectivity of πi (Ax-
iom 5.5), and the fact that {π0(1), . . . , π0(n0)}={π1(1), . . . , π1(n0)}.�e latter fol-
lows from the de�nition of position concretization for position 1 (⇒Def. 5.6):

posγ(1)={π0(1), . . . , π0(n0)} ∖ {π1(1), . . . , π1(n0)} .
Taking into account that posγ(1)=∅ (as pos(1)=0), we obtain the desired set equality:

{π0(1), . . . , π0(n0)}={π1(1), . . . , π1(n0)} .
�is completes the base case proof.

Use case

By this argument we have established the hypothesis for any k≤n0. Instantiating k
with n0 yields:

{sum ∶= 0∑
i=1

e(π1(i))}⟨{n0}≪sum=sum+e;≫{0}⟩(sum= n0∑
i=1

e(π0(i)))
�e sum in the update collapses yielding the Skolemized version of the original con-
jecture (6.1).

�e lessons learned from the example are: We have veri�ed the transaction mech-
anism for an arbitrary number of threads.�is is important, since it is easy to devise
code that works for n but not for n+1 threads.�e state explosion caused by the poten-
tially di�erent ordering of transactions is e�ciently controlled, even without further
knowledge of concrete data. �e scheduling-independence of the system does not
require a separate proof before the functional properties can be addressed. Further-
more, it is possible to apply the full power of deductive reasoning about unbounded
data and its implementations (e.g., over�ow control for the integer variables [Beckert
and Schlager, 2005]). �
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6.4 Treating Locking Primitives

�e lock acquisition method is symbolically executed by applying the rule shown in
Figure 6.2.�e structure of this rule is similar to the step rule for handling normal as-
signments. Execution is successful if the path condition is satis�ed and the statement
is enabled (remember,P= i implies enabled(i)).As before, the thread performing the
acquire has the id tid=πi(Post(i)+ 1).

lock

Ô⇒P= i

o∗(tid).<lokount>=0 ∨ o∗(tid).<lokedby>= tid,
path(i , p, tid)Ô⇒{o∗(tid).<lokount> ∶=o∗(tid).<lokount> + 1}

{o∗(tid).<lokedby> ∶= tid}
⟨[α {n−1}o.<lok>(){k+1} ω]⟩ϕ

¬path(i , p, tid)Ô⇒⟨[α {n−1}o.<lok>(){k+1} ω]⟩ϕ

Ô⇒⟨[α {n}o.<lok>()
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
at position i in p

{k} ω]⟩ϕ

Figure 6.2.�e rule for lock acquisition

Note that the mutual-exclusion semantics of locking does not appear in the rule
directly. Rather, it is hidden in the de�nition of enabledness (⇒Def. 5.9, 4.13), which
in its turn is part of the axiomatization of position choiceP.
A similar rule exists for the<unlok>()method (⇒Fig. 6.3), which decreases the

lock count and clears the locked-by status when the count reaches zero. For simplicity
we do not clear the <lokedby>�ag in the calculus, since it does not prevent further
acquisition of the lock once <lokount> has reached zero.
Programmers use locking protocols (besides thread-local data) to enforce atom-

icity of code sections.�e easiest way to prove lock-based atomicity with our calculus
is by using the invariant rule. We describe this in detail in Section 7.1.

Recognizing Deadlock

�e presence of locking opens a possibility for deadlock. Just as the sequential KeY
calculus maps abrupt termination onto non-termination, we have decided to model
deadlock in the logic as termination. It is still easy to discern a deadlocked state from
normal termination by considering the �nal program con�guration. Besides, the de-
sired postcondition would still hold, even if the program becomes prematurely dis-
abled.
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unlock

Ô⇒P= i

path(i , p, tid)Ô⇒{o∗(tid).<lokount> ∶=o∗(tid).<lokount> − 1}
⟨[α {n−1}o.<unlok>(){k+1} ω]⟩ϕ

¬path(i , p, tid)Ô⇒⟨[α {n−1}o.<unlok>(){k+1} ω]⟩ϕ

Ô⇒⟨[α {n}o.<unlok>()
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
at position i in p

{k} ω]⟩ϕ

Figure 6.3.�e rule for lock release

6.5 An Invariant Rule

So far, we have used induction for verifying full programs. In the following we present
a complementary rule invariant, which allows tackling each potentially enabled state-
ment separately. Instead of an induction hypothesis, the user has to state (and then
prove) a suitable invariant INV of the system.�e rule is:

invariant

ΓÔ⇒UINV , ∆

INV , P=0Ô⇒ϕ

INV , path(1, p, tid(1)), enabled(1)Ô⇒
⟨[p∗(tid(1))1 ]⟩{pos(1) ∶=pos(1) − 1}{pos(2) ∶=pos(2) + 1}INV

⋮

INV , path(q, p, tid(q)), enabled(q)Ô⇒
⟨[p∗(tid(q))q ]⟩{pos(q) ∶=pos(q) − 1}{pos(q + 1) ∶=pos(q + 1) + 1}INV

ΓÔ⇒U⟨[p]⟩ϕ, ∆
(∗)

We assume that the program p has q positions, and p∗(tid(i))i is the sequential instan-
tiation (⇒ Def. 4.7) of the atomic program at position i in p.�e id of the thread
executing the instantiation is as usual: tid(i)=πi(Post(i) + 1).

�e �rst premiss of the rule states that the system satis�es the invariant in its ini-
tial con�guration. �e second premiss states that the invariant implies the desired
property, once no thread is longer enabled. What follows are q premisses—one for
each position in the program—stating that the “sequential” execution of the atomic
statement at this position preserves the invariant. For each position we can assume its
enabledness predicate and the corresponding path condition.
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Comparison to loop invariants

At this point it is natural to compare the above invariant rule to the standard loop
invariant rule (⇒ Sect. 2.8). First, while a loop only has one degree of freedom (the
execution of the loop body), a concurrent program has one degree of freedom for
each potentially enabled position. Every executed statement brings the system into
a new state, and, thus, has to be shown as invariant-preserving. Second, the concur-
rent invariant formula can—andmost probably will—contain control variables, which
correspond to the loop counter.�ird, our invariant rule is sound for the diamond
modality even without a special termination argument.�e only potential sources of
non-termination are loops, which we assume as atomic, and the sequential calculus
fragment is sound and complete for these. For this reason, the above invariant rule is
also not needed for the completeness of the concurrent calculus.

6.6 Remarks on Calculus Soundness

�e soundness of a veri�cation calculus—together with the adequacy of the underly-
ing programming language theory—is an issue of great importance.Wehave validated
our calculus (and its implementation) by extensive testing. As with the sequential cal-
culus of KeY we have not performed a formal/mechanized soundness proof.�e rea-
son for this decision is a resource trade-o�, and Chapter 9 is dedicated to explaining
this trade-o� in detail.
We did though state in the previous chapters a formal semantics of the logic.

Among other things, the semantics de�nes the scheduler axioms, which are used by
the calculus. In fact, we did state two versions of semantics: one with explicit thread
ids (⇒Chap. 4) and one with permutations (⇒Chap. 5).�is approach has helped us
to separate concerns present in developing a general program logic with a determin-
istic scheduler and later one with symmetry reduction. It is of course an interesting
question why the latter logic correctly simulates the former.

�e key to answering this question is in the con�guration concretization func-
tion (⇒ Def. 5.6) and the scheduler decomposition equality (5.1).�e con�guration
concretization function explains how every con�guration with permutations can be
translated into a con�guration with concrete tids.�e scheduler decomposition ex-
plains the same for the scheduler function. Both translations are quite simple, and
allow us to fall back on many common de�nitions in both logics.
Ultimately, of course, it is impossible to relate formal and informal artifacts for-

mally.�us, there can be no formal proof that any of these semantics are adequate
w.r.t. the Java Language Speci�cation. It is also impracticable to prove that they con-
form with the implementation of any given compiler and JVM. In this light, Chap-
ter 9 explains why testing is necessary for obtaining a reliable reasoning system.�e
sequential KeY calculus is automatically tested with the compiler test suite [Jacks] on a
regular basis. For reasons probably related to nondeterminism, such test suites do not
include concurrent programs.�is problemdoes not arise when “running” a program
in a veri�cation system though, as one can usually make assertions over all threads
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. . .
Õ××××

compiler and JVM
Õ××××
correctly describes the language implemented by

JLS
Õ××××
adequate

MODL semantics with explicit thread ids (Ch. 4)
Õ××××
simulates correctly

MODL semantics with permutations (Ch. 5)
Õ××××
sound

calculus
Õ××××
implements correctly

prover
Õ××××
. . .

Figure 6.4. Reliability of reasoning: artifacts and their relations

and/or interleavings.�us, a suite of small programs (and reference results) for testing
how veri�cation systems treat concurrency primitives is indeed feasible. Such a test
suite would be of great bene�t to the �eld.1

1 We have started building such a benchmark/test suite in the context of the COST Action
IC0701 “Formal Veri�cation of Object-oriented So�ware” (http://www.ost-i0701.org).

https://www.cost-ic0701.org
https://www.cost-ic0701.org
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Extensions and Re�nements

7.1 Proving Atomicity with Invariants

A method or code block is atomic if its execution is not a�ected by and does not
interfere with concurrently-executing threads [Flanagan and Freund, 2004]. �ere
are two main reasons for wanting to establish atomicity of code sections:

• One reason roots in the limitation of our calculus that all loops must be atomic
(i.e., appear within atomic blocks). In real JAVA programs, atomicity of code sec-
tions is implemented implicitly with locking or thread-local data encapsulation.
�us, it is necessary to prove that every such implementation is indeed correct,
and no unsoundness is introduced by putting loops into explicit atomic blocks.

• �e second reason is to coarsen the interference granularity of programs and sim-
plify reasoning about their concurrent behavior. It is o�en useful to separate con-
cerns, i.e., to establish atomicity of code sections �rst, and then use this fact in
further proof of functional correctness.

So far we have relied on atomicity as a proviso imported into the proof (possibly es-
tablished by some other tool). Here’s how we can prove atomicity in a deductive veri-
�cation framework.
To restate the de�nition more formally, a code block β is atomic if for every pro-

gram execution with �nal state s there is some equivalent (i.e., also ending in s) exe-
cution, where β is executed without interruption. It is actually possible to specify the
atomicity de�nition of β as a formula of our logic:

∀v .(⟨α β ω⟩(x=v)Ð→∃s.{σ ∶= s}⟨α ≪β≫ ω⟩(x=v)) ,
where σ is the scheduling seed (cf. scheduler axioms on page 61), and x is the only
location that β modi�es (assumed here without loss of generality).
In theory, we could establish atomicity by proving the above formula.�ere are

two hurdles though. First, we have not stated a calculus for scheduling seeds, so there
is (currently) no way to eliminate the existential quanti�er. Second, this method does
not work for proving atomicity of loops, since we cannot reason about the program
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in the antecedent formula, as it is then not syntactically valid. To sidestep these prob-
lems we now show how to check su�cient conditions for atomicity of code sections
guarded by locking.
A su�cient condition for atomicity of β is:

∑
i∈C(β)

pos(i)≤1 ,
where C(β) is the set containing at least (a) all program positions of β and (b) all
positions that access the same shared state as β1.�is condition ensures that whenever
some thread could execute a statement potentially interfering with β, β has either not
yet started or has already �nished.�e condition can be proven with help of a simple
invariant as illustrated by the following example.

Example 7.1. We want to use the invariant rule to establish atomicity of the following
code section protected by locking2 :o.<lok>(); a=o.sum+e; o.sum=a; o.<unlok>();
Since this is the only critical section in the system, the atomicity condition is:

N ≤1, where N =
q∑
i=2

pos(i) ,
which states that the con�guration never hasmore than one thread between its second
and the last position. q is here the number of statements; for the above code, q=4.
Before the atomicity proof can succeed, the above invariant has to be strengthened to

INV =N ≤1 ∧ (N =o.<lokount>) .
Applying the invariant rule produces 6 premisses:

(1a)�is premiss states that the invariant holds in the initial state. We assume that the
initial state satis�es o.<lokount>=0 and that the initial con�guration is:{n}o.<lok>();{0}a=o.sum+e;{0}o.sum=a;{0}o.<unlok>();{0} .
�e invariant clearly holds then, since both N =

4∑
i=2

pos(i) and o.<lokount>
are zero.

(1b) We ignore the premiss INVÐ→ϕ, since we are only interested in the mainte-
nance of the invariant.

(1)�is premiss has to show that the locking statement at position 1 preserves the
invariant. In order for the statement to be enabled at all, the lockmust be available
before execution.�en, N =0 before the locking per the second conjunct of the
invariant, which we can assume in the pre-state. A�er the execution, both N ando.<lokount>are equal to 1 (⇒ Fig. 7.1 for amore detailed proof of invariance).

1�is information may be available in form of modi�es/reads clauses.
2 To achieve proper mutual exclusion without complicating the proof obligation we assume
in this example that the variable o is static. In general, this variable would have to be local,
and the calculus would check that all threads lock the same object.
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�e premiss of the rule for position 1 is the sequent:

INV , path(1, p, tid(1)), enabled(1)Ô⇒

⟨p∗(tid(1))1 ⟩{pos(1) ∶=pos(1) − 1}{pos(2) ∶=pos(2) + 1}INV

Here tid(1)=π1(∑5i=2 pos(i) + 1), but this is irrelevant, since no thread-local data is involved.
Expanding the de�nitions yields:

(N ≤ 1) ∧ (N =o.<lokount>),
true, (pos(1)>0) ∧ (o.<lokount>=0)Ô⇒

⟨o.<lok>();⟩{pos(1) ∶=pos(1) − 1}{pos(2) ∶=pos(2) + 1}((N ≤ 1)
∧ (N =o.<lokount>))

A�er using o.<lokount>=0 from the enabledness condition for rewriting the invariant in
the antecedent we obtain:

N ≤ 1, N =0, pos(1)>0, o.<lokount>=0Ô⇒
⟨o.<lok>();⟩{pos(1) ∶=pos(1) − 1}{pos(2) ∶=pos(2) + 1}((N ≤ 1)

∧ (N =o.<lokount>))
Symbolic execution and update application increases both N and o.<lokount> by one,
while the update to pos is irrelevant:

N ≤ 1, N =0, pos(1)>0, o.<lokount>=0Ô⇒
((1 + N ≤ 1) ∧ (1 + N =o.<lokount> + 1))

A�er rewriting the succedent with both equalities from the antecedent, we have:

0≤ 1, N =0, pos(1)>0, o.<lokount>=0Ô⇒(1+ 0≤ 1)∧ (1 + 0=0 + 1) ,
which clearly holds.

Figure 7.1. Atomicity proof with invariant, premiss for position 1

(2)�e statements at position 2 preserves the invariant, since it can neither change
the value of N nor of o.<lokount>. Only the statements at positions 1 and 4
change these (⇒ Fig. 7.2 for a more detailed proof of invariance).

(3) Position 3: same as premiss (2).
(4) Position 4: analogical to premiss (1).

�us, the locking works correctly, and the code section is atomic. Once a thread has
entered the section it will run to completion without interference. We can use this fact
to simplify further reasoning. �

�e above method allows us to prove atomicity of β in
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o.<lok>(); β; o.<unlok>();
regardless of what β is, as long as it does not contain locking operations.�is, in turn,
can be established by an easy syntactic check.We can even prove that a loop is atomic,
if we ignore for a moment that a loop without an enclosing atomic block is not a
syntactically valid program.

�e premiss of the rule produces the sequent:

INV , path(2, p, tid(2)), enabled(2)Ô⇒

⟨p∗(tid(2))2 ⟩{pos(2) ∶=pos(2) − 1}{pos(3) ∶=pos(3) + 1}INV

Here tid(2)=π2(pos(3)+ pos(4) + pos(5)+ 1), but we will not need this for the further proof.
Expanding other de�nitions yields:

(N ≤ 1) ∧ (N =o.<lokount>), true, pos(2)>0Ô⇒
⟨a=o.sum+e;∗(tid(2))⟩{pos(2) ∶=pos(2) − 1}{pos(3) ∶=pos(3) + 1}((N ≤ 1)

∧ (N =o.<lokount>))
which simpli�es to:

(N ≤ 1) ∧ (N =o.<lokount>), pos(2)>0Ô⇒
⟨a=o.sum+e;∗(tid(2))⟩{pos(2) ∶=pos(2) − 1}{pos(3) ∶=pos(3) + 1}((N ≤ 1)

∧ (N =o.<lokount>))
�e symbolic execution of the sequential program in the diamond does not a�ect the postcon-
dition (as it does not contain a). �e update has no e�ect either, since both pos(2) and pos(3)
are summands in N . Altogether:

(N ≤ 1) ∧ (N =o.<lokount>), pos(2)>0Ô⇒(N ≤ 1)∧ (N =o.<lokount>) ,
which trivially holds.

Figure 7.2. Atomicity proof with invariant, premiss for position 2

7.2 Treating Condition Variables

Introduction

In the followingwepresent a calculus extension for verifying programswith condition
variables. �is is the most complex part of our calculus and its status must still be
considered experimental. We also make a number of simpli�cations and restrictions.
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�e biggest restriction is due to the fact that a correct implementation of a condi-
tion variable in JAVA requires a non-atomic loop, which we cannot (yet) treat in our
framework. On the other hand, for conditions that are atomic, we can consider the
whole wait-in-loop idiom as one atomic statement. Many programs in practice sat-
isfy these requirements. Such programs can be veri�ed with this calculus. We actually
make an even stronger restriction, demanding that evaluating the condition does not
change the state.
To simplify matters further, we demand that all threads synchronize on the same

object and that the condition is uniform (i.e., if one thread satis�es it, then all do).
�is is the case when the condition is expressed in terms of a shared data structure.
Since we do not allow thread identities in programs, one cannot interrupt()

a thread. �us, we do not model the case when a thread exits a condition variable
with an InterruptedExeption. Unsurprisingly, we also do not allow the use of
the wait(long timeout)method, since our framework has no notion of real time.
Additional Means of Expression

We package the common implementation of a condition variable in a special ghost
methodvoid <waitUntil>(boolean b), whichwemake part of theObjet class.
�e actual JAVA implementation to be veri�ed is replaced by this method during the
unfolding stage of the veri�cation process.�e method has as parameter a boolean
condition, which must evaluate to true for a thread to proceed (it is the negated con-
dition of the condition-testing while loop in the original program).
An example of the unfolding is given in Figures 7.3 and 7.4.
We need some means to di�erentiate between threads that are ready to execute<waitUntil>(b) and threads that have suspended their execution until a noti�ca-

tion arrives. We employ the ghost �eld <waiting> present in every object to keep
track of the number of suspended threads. If the program has more than one wait()
on (potentially) the same object then position-indexed <waiting> �elds have to be
used.
An important question is when a position with <waitUntil>(b) is enabled. We

recall that

enabled(i)=∃t. (t ∈posγ(i) ∧ (path(i , p, t)Ð→enabled(p(i), t)))
and proceed to extend the predicate enabled(s, t).
De�nition 7.2 (Enabledness of <waitUntil>()).We extend Def. 4.13 of statement
enabledness as follows. For the o.<waitUntil>(b) statement, we de�ne the predi-
cate to be:

enabled(o.<waitUntil>(b), t)=
(o(t).<lokount>=0 ∨ o(t).<lokedby>= t) ,

where t is the executing thread id. �



94 7 Extensions and Re�nementspubli synhronized Objet take ()throws InterruptedExeption {try {while (ount == 0)wait ();} ath (InterruptedExeption ie) {// return without removing}Objet x = extrat (); // dereases ountreturn x;}
Figure 7.3. Element removal method from a blocking concurrent queue (slightly adapted fromjava.util.onurrent.ArrayBlokingQueue). If the queue is empty, a consumer thread
blocks until an element is put into the queue

q.<lok >();waitUntil ( ount !=0 );items=this .items;x_1=items[takeIndex ℄;items[takeIndex ℄= null ;i=takeIndex ;j_4=i+1;i=j_4;j_2=i;j_3=items.length;b=j_2 ==j_3;if (b) {j_1 =0;} else {j_1=i;}takeIndex =j_1;j_5=ount -1;ount=j_5;q.notifyAll ();res=x_1;q.<unlok >();
Figure 7.4. Element removal method a�er unfolding
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Incidentally, this is the same condition as for lock acquisition. �e di�erence (i.e.,
the fact that some threads may have suspended execution) is hidden in the de�nition
of posγ (⇒Def. 5.6), which we will adapt next.
First though, we need to introduce yet another “permutation” function. For each

position i with a <waitUntil>(b), there is a non-rigid function symbol
πi′ ∶N→T .

�e function stores the ids of the threads that have suspended execution since the lastnotifyAll().
De�nition 7.3 (Con�guration concretization for condition variables). We amend
the De�nition 5.6 as follows. If the statement o.<waitUntil>(b)occupies position i
in a program, then

posγ(i)=({πi−1(1), . . . , πi−1(Post(i − 1))}∖
{πi(1), . . . , πi(Post(i))})∖
{πi′(1), . . . , πi′(o(t).<waiting>)} .

�

�e third subterm is new and expresses the fact that suspended threads are unavailable
for scheduling.

�e usual axioms still hold, in particular Axiom (5.6):

πi(Post(i)+ 1)∈posγ(i) .
�ere is now one additional axiom

πi′(o(t).<waiting>+ 1)∈posγ(i) (7.1)

constraining the id of a thread next to suspend execution.
Please note that πi′ is non-rigid and depends on the state in which it is evaluated.

In particular, its interpretation depends on the value of pos( j), where j is the position
of notifyAll(). One can think of pos( j) as an “invisible parameter” to πi′ . Perform-
ing a notifyAll() cleans the slate and gives us a “fresh” πi′ , with a possibly di�erent
ordering of threads suspending.

�eRules for Symbolic Execution

We start with a rule for notifyAll(), which is shown in Figure 7.5. If this statement
is enabled (�rst premiss), and the path condition is satis�ed, the rule wakes up all
suspended threads by setting the <waiting> counter to zero (second premiss). If the
path condition is not satis�ed, the statement is a no-op.
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notifyAll

Ô⇒P= i

path(i , p, tid)Ô⇒{o∗(tid).<waiting> ∶=0}
⟨[α {n−1}o.notifyAll(){k+1} ω]⟩ϕ

¬path(i , p, tid)Ô⇒⟨[α {n−1}o.notifyAll(){k+1} ω]⟩ϕ

Ô⇒⟨[α {n} o.notifyAll()
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
at position i in p

{k} ω]⟩ϕ

Figure 7.5.�e rule for noti�cation

waitUntil

Ô⇒P= i

Ô⇒Φ←→⟨boolean x = b∗(tid);⟩x= true
path(i , p, tid), Φ, o∗(tid).<lokount>>0, o∗(tid).<lokedby> ∈posγ(i)Ô⇒

⟨[α {n−1}o.<waitUntil>(b){k+1} ω]⟩ϕ

path(i , p, tid), Φ, o∗(tid).<lokount>=0Ô⇒
{o∗(tid).<lokount> ∶=depth(tid)}
{o∗(tid).<lokedby> ∶= tid}
⟨[α {n−1}o.<waitUntil>(b){k+1} ω]⟩ϕ

path(i , p, tid), ¬Φ, o∗(tid).<lokount>>0, o∗(tid).<lokedby> ∈posγ(i)Ô⇒
{o∗(tid).<waiting> ∶=o∗(tid).<waiting> + 1}
{depth(tid) ∶=o∗(tid).<lokount>}
{o∗(tid).<lokount> ∶=0}
⟨[α {n}o.<waitUntil>(b){k} ω]⟩ϕ

path(i , p, tid), ¬Φ, o∗(tid).<lokount>=0Ô⇒
{o∗(tid).<waiting> ∶=o∗(tid).<waiting> + 1}
⟨[α {n}o.<waitUntil>(b){k} ω]⟩ϕ

¬path(i , p, tid)Ô⇒⟨[α {n−1}o.<waitUntil>(b){k+1} ω]⟩ϕ

Ô⇒⟨[α {n}o.<waitUntil>(b)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

position i in p

{k} ω]⟩ϕ

Figure 7.6.�e rule for <waitUntil>()
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Now we look at the rule for symbolic execution of <waitUntil>() given in Fig-
ure 7.6.�e �rst premiss demands, among other things, that the position in question
is enabled: enabled(i)must hold.

�e second premiss captures the condition Φ of the condition variable. Φ can be⟨boolean x =b∗(tid);⟩x=true or its �rst-order equivalent. Note that the diamond
formula is purely sequential and b∗(tid) is the sequential instantiation of b for the next
thread to run at position i (i.e., thread with id πi(Post(i) + 1)). In the case of the
blocking queue, Φ is simply ount /=0.

�e third premiss assumes that the condition Φ is satis�ed and there is one non-
suspended thread (which holds the lock for o).�is thread then proceeds past the<waitUntil>().

�e fourth premiss assumes that Φ holds, but no thread holds the lock of o. In this
case one of the recently awakened threads contending for the lock (there must be at
least one, otherwise P /= i) is successful and proceeds.

�e ��h premiss assumes that the condition Φ does not hold, while one thread
holds the lock. In this case there is no thread movement (the con�guration does not
change), but the number of suspended threads o.<waiting> increases by one.�e
lock is released.

�e sixth premiss assumes that the condition Φ does not hold, while no thread
currently holds the lock. In this case one of the recently awakened threads returns to
suspended state.

�e seventh and �nal premiss deals with the negative path condition. In this case,
just as with other rules, the thread executes a no-op.

7.3 Proving Absence of Data Races and JMM-Safety

According to the Java Memory Model, updates to shared state performed by one
thread need not become immediately visible to other threads. Even worse, updates
need not become visible to other threads in the order they have been made. Since
this state of a�airs puts a high burden on the programmer, the JMM describes a suf-
�cient condition for attaining sequentially consistent program behavior.�is condi-
tion, known as the DRF guarantee, can be stated as follows:

If every sequentially consistent execution of a program is free of data races,
these are all the executions allowed for that program. [Huisman and Petri,
2007]

Sequentially consistent executions are exactly executions built by thread interleaving.
It is our goal to check that the program has no other executions, since (a) this is what
programmers usually expect and (b) these are exactly the executions considered by
our veri�cation calculus. To achieve this we need to establish that all interleaving ex-
ecutions are free of data races.
In the following, we extend our calculus with explicit checks for data races. With-

out them, a veri�ed program could still contain “benign” data races or data races in
parts not covered by the speci�cation. In the light of the JMM, these races become a
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problem. For the sake of completeness it should be noted though that the absence of
data races does not entail the correctness of the program.
We use a de�nition of data race slightly adapted from [Ševčík, 2008].

De�nition 7.4 (Data race). An interleaving contains a data race i� it contains two
actions a1 and a2 such that:

1. a1 and a2 are performed by two di�erent threads on the same shared location
2. a1 is a write
3. there is no synchronization link between the two, i.e., there are no actions b1
and b2 between a1 and a2 (it is allowed that a1=b1 and a2=b2) such that either
(a) b1 is an unlock on object m and b2 is a lock on object m or
(b) b1 is a write to some volatile location v and b2 is a read from v �

All currently available functional veri�cations systems for multi-threaded JAVA-
like languages are either unsound (they assume a sequentially consistent semantics)
or incomplete (they can only detect synchronization links of type 3(a)).�e calculus
extension presented below is able to detect synchronization links of both types.
Consider the code in Figure 7.7. One thread executes the method one() while

another thread concurrently executes two(). In a sequentially consistent model this
is perfectly safe. Under the JMM, this code can throw a NullPointerExeption
due to two() seeing a partially constructed object.�is happens when the update toinstane by thread one has already propagated to thread two but not yet the update
to name.
One way to avoid this is to declare instane volatile. �is would create a syn-

chronization edge between writing instane in one() and reading it in two().�e
edge would ensure that all updates made during the process of initialization by one
thread before it writes instane are visible to the other thread a�er the other readsinstane. two()will either see instane as null or pointing to a completely con-
structed object.�is pattern is also known as safe one-time publication [Goetz et al.,
2006].

Note 7.5 (Data races vs. functional correctness). Concurrency texts and programmers
are o�en preoccupied with data races (or “race conditions”). Inside the JMMdomain,
this term is used in a strict and “technical” sense; outside it is o�en a catch-all phrase
for concurrency problem.�e latter view of a data race is problematic for two reasons:

•�ere are correct programs with data races. Representatives of this program class
usually deal with a stream of data values entering from the environment.
•�ere are incorrect programs without race conditions. Incorrect in the concur-
rency part, that is. Also, any program can be automatically made data-race-free
by enclosing every single access to shared data in a synchronized block.

�e above “�x” makes it clear that the problem lies in the granularity of access.
For this reason, we advocate—outside of the JMM domain—the term atomicity fail-
ure as a replacement for “data race”. Furthermore, it should be pointed out that the



7.3 Proving Absence of Data Races and JMM-Safety 99lass Foo {private String name = "Foo";stati Foo instane;stati void one() {if (instane==null) instane = new Foo(); }stati void two() {if (instane!=null) System.out.println(instane.name.length());}}
JAVA

Figure 7.7. Code, surprisingly prone to failure under the JMM

correct level of atomicity cannot be established without considering a particular ap-
plication domain.�ere can be no universal, application-independent atomicity fail-
ure checker. What can be checked meaningfully is whether a program conforms to its
speci�cation, or to a certain convention, or that it accesses shared state in an internally
consistent manner. �

Calculus extension to prove JMM-safety

De�nition 7.6 (Heap locations, synchronization edges). Let v be a local reference
variable, C a class name and a an attribute name in a given program.�e set of heap
locations Loc is the set of program-compatible pairs:

• (v , a), also written v .a, for every instance �eld
• (C , a), also written C .a, for every static �eld.

�e set of synchronization edges Edge is the set of program-compatible tuples of the
form:

• (v), also written v, called lock/unlock
• (v , a), also written v .a, called instance volatile read/write
• (C , a), also written C .a, called static volatile read/write. �

Note 7.7 (Quantifying over locations). In order to quantify over locations (and edges)
we have to resort to a trick, since attribute and class names are not �rst-class citizens
of the underlying KeY logic. We encode heap locations v.a as pairs (v , a♯), where v is
the reference to the object and a♯ is a natural-number hash of the attribute name a.
�us, quantifying over such locations amounts to quantifying over pairs of objects
and natural numbers. A similar scheme applies to static locations. �
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To detect data races (or more precisely, absence of synchronization edges), we
de�ne two auxiliary non-rigid function symbols:

lastwrittenby∶ Loc→T ,

which keeps track of which thread was the last to update a heap location, and

mem∶ Loc ,T ,T , Edge→{dirty, �ushed, visible} ,
which tracks the visibility status of a heap location between two threads—the writer
and a reader.

mem(l , t1, t2 , e)=dirty means that the last update of the location l performed by
t1 need not be visible to t2 via synchronization edge e (i.e., t1 has updated l a�er its
last release on e).�e value �ushed means the same, but in addition we know that t1
has performed the release part of the edge e and has not changed l a�erwards. t2 will
see the newest value of a �ushed location a�er performing a corresponding acquire
on e. Finally, the value visiblemeans that the latest update by t1 is visible to t2 via e.

�e JMM-safe rules for symbolic execution of assignments are presented in Fig-
ure 7.8.�ese rules supersede the basic step rule presented in Section 6.3.�eir struc-
ture is quite similar to step, but there are separate rules for reading andwriting volatile
locations as well as for non-volatile.�e presented rules only treat instance �elds, but
the rules for static �elds are a direct analogon.

�e most interesting part is the second premiss of the rule step_read_normal.
�is premiss becomes relevant when a thread is trying to access a non-volatile heap
location that has been previously updated by another thread. To discharge this pre-
miss it is then necessary to show that there has been a synchronization edge between
the two threads in-between.�e presence of a synchronization edge (resp. its source
and sink) is recorded by the rules step_write_volatile and step_read_volatile.�e
rule step_write_normal, on the other hand, excludes the location it updates from the
scope of preceding synchronization edges.
Finally, the following modi�cations complete the calculus:

• �e rules unlock and lock (⇒ Sect. 6.4) are modi�ed to include the updates sim-
ilar to rules step_write_volatile and step_read_volatile.

• As part of the instance initialization process, KeY executes code that assigns de-
fault values to object �elds.�ese assignments must be executed by a special rule
that (a) does not check visibility w.r.t. a previous write to the �eld (there are none)
and (b) establishes a visibility relationwith all subsequent accesses to the �eld.�e
JLS guarantees that default values are always visible without further action by the
programmer.

7.4 Further Extensions and Future Work

Arbitrary systems, pl.n.: Systems about which
nothing general can be said, save “nothing
general can be said”.
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step_write_normal

Ô⇒P= i

path(i , p, tid), lastwrittenby(v.a♯) /= tidÔ⇒
∃e.mem(v.a♯ , lastwrittenby(v.a♯), tid, e)=visible

path(i , p, tid)Ô⇒⟨[v.a∗(tid)=se∗(tid)]⟩
{lastwrittenby(v.a♯) ∶= tid}
{for t, e; t /= tid; mem(v.a♯ , tid, t, e) ∶=dirty}

⟨[α {n−1}v.a=se{k+1} ω]⟩ϕ

¬path(i , p, tid)Ô⇒⟨[α {n−1}v.a=se{k+1} ω]⟩ϕ

Ô⇒⟨[α {n} v.a= se
´¹¹¹¹¹¹¸¹¹¹¹¹¶

position i in p,
a is non-volatile

{k} ω]⟩ϕ

step_read_normal

Ô⇒P= i

path(i , p, tid), lastwrittenby(v.a♯) /= tidÔ⇒
∃e.mem(v.a♯ , lastwrittenby(v.a♯), tid, e)=visible

path(i , p, tid)Ô⇒⟨[v∗(tid)0 =v.a∗(tid)]⟩⟨[α {n−1}v0=v.a{k+1} ω]⟩ϕ

¬path(i , p, tid)Ô⇒ ⟨[α {n−1}v0=v.a{k+1} ω]⟩ϕ

Ô⇒⟨[α {n} v0 =v.a
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶

position i in p,
a is non-volatile

{k} ω]⟩ϕ

step_write_volatile

Ô⇒P= i

path(i , p, tid)Ô⇒⟨[v.a∗(tid)=se∗(tid)]⟩
{for l , t; mem(l , tid , t, v.a♯)=dirty; mem(l , tid , t, v.a♯) ∶=�ushed}

⟨[α {n−1}v.a=se{k+1} ω]⟩ϕ

¬path(i , p, tid)Ô⇒⟨[α {n−1}v.a=se{k+1} ω]⟩ϕ

Ô⇒⟨[α {n} v.a= se
´¹¹¹¹¹¹¸¹¹¹¹¹¶

position i in p,
a is volatile

{k} ω]⟩ϕ

step_read_volatile

Ô⇒P= i

path(i , p, tid)Ô⇒⟨[v∗(tid)0 =se∗(tid)]⟩
{for l , t; mem(l , t, tid , v.a♯)=�ushed; mem(l , t, tid , v.a♯) ∶=visible}

⟨[α {n−1}v0=v.a{k+1} ω]⟩ϕ

¬path(i , p, tid)Ô⇒⟨[α {n−1}v0=v.a{k+1} ω]⟩ϕ

Ô⇒⟨[α {n} v0 =v.a
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶

position i in p,
a is volatile

{k} ω]⟩ϕ

Figure 7.8. JMM-faithful rules for read and write access
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Extending to non-atomic loops

�e restriction of only dealing with atomic loops is admittedly quite unsatisfying. An
obvious line of research would be towards overcoming this limitation.

�e problem with non-atomic loops is that they cause threads to “jump back”
in the program (in an observable way). On the other hand, the con�guration con-
cretization (⇒ Def. 5.6), which is at the core of our model, depends on the fact that
the number of threads past a given position never decreases.
One possible way to attack the loop problem is by giving the thread choice func-

tions a parameter: an iteration counter. Another possibility could be to model the
loop in such a way that each iteration is run by a dedicated thread.�e latter involves
turning the threads on and o� at the right moment as well as “handing over” the
thread-local data.
On the other hand, even programs with non-atomic loops can already be mean-

ingfully veri�ed. A typical such program is a server:while (true) {Soket soket = serverSoket.aept();new Thread(new Handler(soket)).start();}
JAVA

Instead of including the listening loop in veri�cation, it is o�en su�cient to cut o�
the loop and verify the correctness of n handler threads running in parallel.�e proof
obligation then looks like this:

∀n.(n≥0Ð→⟨{n}handler{0}⟩∀i .(1≥ i≥nÐ→output(i)= f (input(i)))) .
Here handler is the body of the run()method of the Handler class.�e postcondi-
tion asserts that the output of each threads is correctly related to its input (which may
be the Soket object or the data read from it).
Abrupt termination

Currently, we treat abrupt termination in concurrent programs half-heartedly. Excep-
tions can only be thrown but not caught. Abrupt method completion upon return is,
in contrast, possible.
We have mostly elided treating method invocations so far. Here’s how it works.

When inlining method implementations KeY marks the method boundaries with so-
called method frame blocks:method-frame(result->retvar, soure=T, this=target) : { body } ,
which also record the variable to store the return value upon return, the source class
of the method body, and the value of this reference.
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Upon encountering a return statement in the body of a method frame, the rule
for handling returns assigns the returned value to retvar and then moves the involved
thread id to the position immediately outside the method frame.

return

Ô⇒P= i

¬path(i , p, tid)Ô⇒⟨[α method-frame(...) :{β {n−1}return se;{k+1}γ} {l}ω]⟩ϕ
path(i , p, tid)Ô⇒⟨[retvar=se;∗(tid)]⟩⟨[α method-frame(...) :{β {n−1}return se;{k}γ} {l+1}ω]⟩ϕ

Ô⇒⟨[α method-frame(...) : {β {n}return se;
↑

position i in p

{k}γ} {l}ω]⟩ϕ
Now, it would be desirable to extend the treatment of abrupt termination to full

handling of exceptions.�e sequential KeY calculus does it by syntactically rearrang-
ing program parts. In the concurrent case this approach is probably not feasible, as it
would result in di�erent program texts for di�erent threads. A more promising ap-
proach is to equip each thread with a ghost variable “exception status”, which would
contain either the last thrown exception or ⊥ (for normal execution). We also extend
the de�nition of the path condition to include exception status. According to this �ag
threads will execute or skip certain parts of the program. If the exception status is ⊥,
the program executes normal code and skips any catch clauses. If an exception has
been thrown, the program skips normal code and executes the (appropriate) catch
clause. Executing �nally clauses would require jumps similar to those a�er a return,
but these are harmless, since it is impossible to create a loop.

Modularization

It is known that the e�ciency of a veri�cation system is bounded to a great degree
by the compositionality of reasoning it o�ers. Suggestions for modularizing reason-
ing about concurrent JAVA programs have been made in [Greenhouse and Scherlis,
2002b; Rodríguez et al., 2005] and others. Research indicates consistently that pro-
grammers use a small number of “serializability techniques”, such as locking protocols
and reference con�nement, to ensure correctness of programs.
With sequential programs, methods and their contracts are common units of

composition. Of course, regular contracts are meaningless in concurrent setting due
to potential interference from other threads. On the other hand, the researchers cited
above have developed additional annotations and analyzes to mitigate this problem.
For instance, if the objects mentioned in the pre- and postconditions are referenced
only by the caller thread, then replacing the method call by its contract is sound again.
�e same holds if the state relevant for amethod call is consistently protected by a lock
and the calling thread holds this lock.
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�ese techniques, originally developed formodel checking and static analysis, can
be put to e�cient use in a deductive framework.
We have also experimented with incorporating the rely-guarantee approach into

our veri�cation framework [Schaaf, 2008]. In this setup, the given program is inter-
leaved with an “opaque” environment, which produces updates to shared state that are
described by the rely predicate.�e experiments have shown that the rely-guarantee
method is compatiblewithDynamic Logic and our symbolic execution calculus.Writ-
ing transitive speci�cations and managing shared state turned out to be challenging
though.

Veri�cation of lock-free algorithms

An interesting class of algorithms are so-called lock-free data structures [Herlihy,
1993].�eir goal is to increase the level of concurrency—and thus throughput—in
an application by not relying on critical sections and mutual exclusion.

�reads do not need to lock the data structure before reading or updating a lock-
free data structure. A thread wishing to perform an update makes a copy of the data,
modi�es the copy, and tries to install the modi�ed version using a special atomic
compare-and-swap (or similar) instruction.�is succeeds if no other thread has per-
formed an update in the meantime. Otherwise, installation fails, the overtaken thread
discards its modi�ed copy and repeats the process from the beginning.
Lock-free concurrency is rapidly entering themainstream, e.g., as part of the stan-

dard JAVA library.�e problem with lock-free algorithms is that they are notoriously
di�cult to design and implement correctly. Verifying them would bring a signi�cant
bene�t to the �eld. At this time, only �rst attempts are being made to produce mech-
anized proofs of real implementations.
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Implementation and Case Studies

8.1 Implementation

We have implemented the basic calculus described in Chapter 6 and the JMM-safety
extension (Section 7.3) in the KeY system.�e changes w.r.t. a stock system amount to
about 3200 lines of code in 56 �les.�e greatest technical di�culty by far was a gener-
alization of the rule application engine. From the very beginning the KeY system was
designed to apply program-manipulating rules only at the beginning of a program.
�is limitation had to be li�ed in order to support multi-threaded execution.

Speci�cation

Veri�cation problems are speci�ed in Dynamic Logic and input to the prover as so-
called dot-key �les [Beckert et al., 2007].We have extended the syntax of dot-key �les
with a keyword \loal.�e keyword distinguishes thread-local from static variables
in declarations.\programVariables {\loal int lo; // thread-loalint glob; // stati}

KeY

�read con�gurations are speci�ed with updates to the non-rigid function pos.
A typical formula thus looks like:\problem {{ \for int i; pos(i) := 0 || pos(1):=2 }\<{ glob = lo;;
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KeY

�e update (�rst line) states that pos is always zero except at position one, where two
threads are ready to be scheduled.�e extra semicolon in the diamond is concrete
syntax for the stop statement. p(1,2) is concrete syntax for π1(2), and lo_l is the
prover’s way to refer to the local variable lo outside the modalities. As promised,lo_l has one argument more than lo (i.e., the thread id).
�e calculus rules

�e step rule is implemented slightly di�erently from the formulation shown in Sec-
tion 6.3.�ere is no premissÔ⇒P=k. Instead the implementation follows the pattern
of the invariant rule (⇒ Sect. 6.5) and automatically performs a case distinction over
all positions. �e rule is shown in Figure 8.1. Per position at least two subgoals are
generated: one for the positive and one for the negative path condition. In the positive
case, a rule from the sequential calculus is matched to the position.�e rule describes
the e�ect on the state resulting from executing this position.�is e�ect may include
generating an update or producing further case distinctions, e.g., to check for a null
reference. An additional subgoal is added for the case that no position is enabled.

Automation

Proof search is automated by the usual strategies of the KeY prover. We have extended
the main strategy with a further parameter controlling when the step rule is to be
applied automatically:

• never
• until some thread becomes disabled
• without limitation.

�e second setting is especially useful when performing induction proofs. In all cases,
step is executed with very low priority, i.e., only a�er no other rules are applicable and
the state description has been simpli�ed as far as possible.
We have also implemented a separate unfolding strategy that pools all rules for

program unfolding (⇒ Sect. 6.2).�is strategy is only used for preparing proof obli-
gations and is not active during proof search.

8.2 Full functional correctness of java.lang.StringBu�er

Wehave applied our system to verify the full functional correctness of amethod of theStringBuffer class in presence of unbounded concurrency.�e class java.lang.StringBuffer is a key class of the standard JAVA library that represents a mutable
character sequence. Its central method is append(har ), which appends the char-
acter  to the end of the sequence.
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step (impl.)

∀i .(1≤ i≤qÐ→¬enabled(i))Ô⇒ϕ

path(1, p, tid(1)), enabled(1)Ô⇒
⟨[p∗(tid(1))1 ]⟩{pos(1) ∶=pos(1) − 1}{pos(2) ∶=pos(2) + 1}⟨[p]⟩ϕ

¬path(1, p, tid(1)), enabled(1)Ô⇒
{pos(1) ∶=pos(1) − 1}{pos(2) ∶=pos(2) + 1}⟨[p]⟩ϕ

⋮

path(q, p, tid(q)), enabled(q)Ô⇒
⟨[p∗(tid(q))q ]⟩{pos(q) ∶=pos(q) − 1}{pos(q + 1) ∶=pos(q + 1) + 1}⟨[p]⟩ϕ

¬path(q, p, tid(q)), enabled(q)Ô⇒
{pos(q) ∶=pos(q) − 1}{pos(q + 1) ∶=pos(q + 1) + 1}⟨[p]⟩ϕ

Ô⇒⟨[p]⟩ϕ

Figure 8.1. Implementation of the step ruleprivate har value[℄;private int ount;publi synhronized StringBuffer append(har ) {int newount = ount + 1;if (newount > value.length)expandCapaity(newount );value[ount++℄ = ;return this;}private void expandCapaity(int minimumCapaity) {int newCapaity = (value.length + 1) * 2;if (newCapaity < 0) {newCapaity = Integer .MAX_VALUE;} else if (minimumCapaity > newCapaity) {newCapaity = minimumCapaity;}har newValue [℄ = new har[newCapaity℄;System .arrayopy(value , 0, newValue , 0, ount);value = newValue ;shared = false;}
Figure 8.2. StringBuffer source code (excerpt)
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Wehave used the original source code shipped by SUNwith the JDK 1.4.2 (shown
inFigure 8.2).�eStringBuffer implementation is backed by a har array, which is
initially 16 elements long. Should the array become full, a new, longer array is allocated
and the contents copied.�is happens transparently for the user.
We now describe the veri�cation process.

Speci�cation

A functional speci�cation of the append method can be given as:

⟨strb = new StringBuffer();⟩∀n.
(n>0Ð→⟨{n}strb.append();{0}⟩strb.ount=n∧

∀k .(0≤k<nÐ→strb.value[k℄=(π1(k + 1)))) , (8.1)
where strb is a static variable of type StringBuffer1 and  is a thread-local har
variable.
Plainly speaking: if n threads are concurrently performing an append on a freshly

created shared StringBufferobject, then all threads will eventually run to comple-
tion, and the StringBu�er will contain exactly the characters deposited by the threads.
Furthermore, the characters will �ll the backing array in the “natural” order, i.e., the
order induced by the thread scheduling.
A�er symbolic execution of the StringBuffer creation (in the sequential dia-

mond) and Skolemization, the original conjecture becomes:

Init ∧ n0>0Ð→⟨{n0}strb.append();{0}⟩strb.ount=n0∧
∀k .(0≤k<n0Ð→strb.value[k℄=(π1(k + 1))) , (8.2)

where n0 is a fresh integer constant and Init is a formula capturing the state a�erStringBuffer creation. Init is shorthand for:strb /=null∧ strb.<lokount>=0 ∧ strb.ount=0∧strb.value/=null∧ strb.value.length=16∧strb.value/=jhar[℄::<get>(jhar[℄.<nextToCreate>) .
�e cryptic last subformula states that the current value array is not aliased to the
next har array to be created. While this precondition is completely obvious, it is
owed to the way KeY deals with instance creation.

1�e semantics de�nition calls for a local variable here, but the calculus is more liberal in this
regard. We use this liberty to write a simpler proof obligation while still achieving the same
e�ect.
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Unfolding

To proceed with veri�cation, we �rst “unfold” (⇒ Sect. 6.2) the implementation ofappend().�e expandCapaity()method is inlined, and fresh local variables are
introduced to eliminate side e�ects and make explicit the atomicity granularity of the
code.�e result is shown in Figure 8.3, though exceptions and array creation are still
in their folded state for brevity.

�e code also shows a call to System.arrayopy(), which cannot be unfolded.
�is native method call can be seen as one big parallel assignment, which is sound
under the atomicity proviso proven below. During symbolic execution, the KeY sys-
tem translates a call like arrayopy(src,srcPos,dest,destPos,len) into a quanti�ed
update (⇒ Sect. 2.4.2)

{for l ; 0≤ l < len; dest[srcDest + l℄ ∶= src[srcPos + l℄} ,
which is a concise way to express a number of updates at once.strb.<lok >();newount =strb.ount+1;j_1=strb.value.length;b=newount >j_1;if (b) {j_2=strb.value.length;j_3=j_2+1;newCapaity=j_3*2;b_1=newCapaity_ <0;if (b_1) {newCapaity=Integer .MAX_VALUE;} else {b_2=newount >newCapaity;if (b_2) {newCapaity=newount ;}}b_3=newCapaity <0;if (b_3) throw new NegativeArraySizeExeption();newObjet=new har[newCapaity℄;sr_1=strb.value;len_2=strb.ount;System .arrayopy(sr_1 ,0,newObjet ,0,len_2);strb.value=newObjet;}val_1=strb.value;j_4=strb.ount;strb.ount=j_4+1;val_1[j_4℄=;strb.<unlok >();

Figure 8.3. StringBuffer source code a�er unfolding
Establishing Atomicity

To separate concerns, we now use the invariant rule to establish atomicity of the
method.�is greatly simpli�es further proof. We follow the pattern from Section 7.1
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and show that the method can only be executed by one thread at a time (on the same
object).�is property can be stated as

N ≤1, with N =
q∑
i=2

pos(i) ,
so the con�guration never has more than one thread between its second and the last
but one position. Before the proof can proceed, the above has to be strengthened to

INV =N ≤1 ∧ (N >0←→strb.<lokount>>0) .
�is invariant clearly holds in the initial state, since both N and <lokount> are

zero. Statements at positions 2 . . . q preserve the invariant, since they cannot increase
the value of N , as only the statement at position 1 can. Finally, the locking statement
at position 1 also preserves the invariant. If the lock is available, then N =0 before the
locking per the second conjunct of the invariant. A�er the execution, both N and<lokount> are equal to 1. If the lock is not available, then the locking statement is
disabled altogether.
Per this invariant, once a thread has entered the method it will run to completion

without interference.�us, the method is atomic, and we can elide locking, replacing
it by an atomic block. Our conjecture becomes:

Init ∧ n0>0Ð→⟨{n0}≪strb.append1();≫{0}⟩strb.ount=n0∧
∀k .(0≤k<n0Ð→strb.value[k℄=(π1(k + 1))) , (8.3)

where the method append1() (shown here folded) is identical to append() save
for the removed locking operations.

Establishing Functional Correctness

So far, we know that the method is correctly synchronized, but is it also function-
ally correct? Using the JAVA-faithful bounded integer semantics of KeY, we have, of
course, discovered that the speci�cation shown above is not quite right, as it holds
true only for n0<231 . Trying to insert more characters into a StringBuffer results
in an ArrayIndexOutOfBoundsExeption.�is boundmay seem of little practical
importance, but it is an instance of a general problem. Concurrent access to bounded
data structures is likely to result in subtle bugs, even in presence of proper synchro-
nization.
Since there is no way to �x the method, we have to amend the conjecture with a

pre-condition limiting the value of n0. Please note that this is not due to a limitation
of our proof method. We now prove full functional correctness with the following,
quite natural invariant:2

2 It is also possible to use induction in a manner similar to Example 6.1.
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INV= pos(1) + pos(2)=n0 ∧ n0<231 ∧ pos(2)≥0∧strb.ount=pos(2)∧
∀k .(0≤k ∧ k<pos(2)Ð→strb.value[k℄=(π1(k + 1)))∧strb /=null∧ strb.value/=null∧strb.value.length≥strb.ount∧strb.value/=jhar[℄::<get>(jhar[℄.<nextToCreate> .

Applying the invariant rule to (8.3) produces three premisses.

Premiss 1: invariant initially valid

In this premiss we need to prove the sequent ΓÔ⇒UINV , ∆. Here, Γ contains just
Init ∧ (n0>0) ∧ (n0<231), and ∆ is empty.�e updateU is given by the thread con-
�guration of the original program.�e formula

⟨{n0}≪strb.append1();≫{0}⟩ϕ
is shorthand for

{pos(1) ∶=n0 ∣∣pos(2) ∶=0}⟨≪strb.append1();≫⟩ϕ .
�e proof obligation is thus:

Init ∧ n0>0 ∧ n0<231Ô⇒

{pos(1) ∶=n0 ∣∣pos(2) ∶=0}(pos(1) + pos(2)=n0 ∧ n0<231 ∧ pos(2)≥0∧strb.ount=pos(2)∧
∀k .(0≤k ∧ k<pos(2)Ð→strb.value[k℄=(π1(k + 1)))∧strb /=null∧ strb.value/=null∧strb.value.length≥strb.ount∧strb.value/=jhar[℄::<get>(jhar[℄.<nextToCreate>) .

�e quanti�er in the succedent has an empty range (due to the update pos(2) ∶=0),
and further basic rewriting renders the sequent proved.�e calculus implementation
�nds the proof automatically in 67 steps.

Premiss 2: invariant implies postcondition upon termination

In this premiss we need to prove the sequent INV , P=0Ô⇒ϕ, where ϕ is the post-
condition. Since the atomic block is the only position, P=0 is equivalent to pos(1)=0
(per Axiom (5.4)).�e proof obligation is thus:

pos(1) + pos(2)=n0 ∧ n0<231 ∧ pos(2)≥0∧strb.ount=pos(2)∧
∀k .(0≤k ∧ k<pos(2)Ð→strb.value[k℄=(π1(k + 1))) ∧ . . . ,
pos(1)=0Ô⇒strb.ount=n0∧

∀k .(0≤k<n0Ð→strb.value[k℄=(π1(k + 1))) .
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�is sequent is easily discharged, since pos(1) + pos(2)=n0 together with pos(1)=0
implies pos(2)=n0.�e calculus implementation �nds the proof automatically in 108
steps.

Premiss 3: invariant preservation

In this premiss we need to prove

INV , path(1, p, tid(1)), enabled(1)Ô⇒
⟨[p∗(tid(1))1 ]⟩{pos(1) ∶=pos(1) − 1}{pos(2) ∶=pos(2)+ 1}INV ,

which is a purely sequential proof obligation. A�er expanding the de�nitions, the path
condition simpli�es to true and the predicate enabled(1) to pos(1)>0.We also expand
the de�nition of sequential program instantiation, obtaining the goal

INV , pos(1)>0Ô⇒⟨[≪strb.append1((π1(pos(2) + 1)));≫]⟩
{pos(1) ∶=pos(1) − 1}{pos(2) ∶=pos(2)+ 1}INV .

�is goal is the most di�cult to prove, since it requires symbolic execution of the
method, reasoning about Java-faithful arithmetics, and quanti�er instantiation. �e
calculus implementation �nds the 2898-step long proof automatically in about 30 sec-
onds.

Further Issues with java.lang.StringBu�erpubli synhronized StringBuffer append(StringBuffer sb) {if (sb == null) {sb = NULL;}int len = sb.length (); // 1int newount = ount + len;if (newount > value.length)expandCapaity(newount );sb.getChars (0, len , value , ount ); // 2ount = newount ;return this;}
Figure 8.4. Atomicity failure in StringBuffer

An interesting issue is present in a related method of StringBuffer class: the
method append(StringBuffer sb) shown in Figure 8.4.

�e method has two critical points: when the length of sb is queried (at 1) and
when the characters are actually copied (at 2). �e problem with this code is that
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nothing prevents some other thread to be scheduled between the execution of (1) and
(2).�e intruding thread may end up removing characters from sb; the length read at
(1) becomes stale and an attempt to copy no-longer-existing characters at (2) produces
an exception.
Note that this scenario does not constitute a data race. All methods involved (i.e.,length(), getChars(...), and delete(...)) are synchronized, thus, all access to

shared data of sb is protected by locks. It’s rather that the lock is released and then re-
acquired, violating the application-speci�c atomicity policy. One can speculate that
this was done for performance reasons.

�e question of course arises how this issue can be detected by veri�cation. It
is clear that the approach taken in veri�cation of the append(har ) method is
not su�cient. Our proof system operates under the closed world assumption, and it
would be necessary to verify the execution of append(StringBuffer sb) in paral-
lel with delete(...)and possibly othermethods. If the full program is not available,
it is possible to interleave the execution of the method at hand with an abstract en-
vironment program and �nd a set of assumptions about this environment that is still
su�cient for the correctness of the method.�is kind of rely-guarantee reasoning is
addressed brie�y in Section 7.4.

Conclusion

During the development of the presented proof systemwehave learned several lessons.
It is possible to execute multi-threaded programs symbolically while taking full

data into account. By employing an explicit scheduler function, our calculus can track
full information about state quite e�ciently, but permits abstraction for further im-
provement.
Underspeci�cation is better than non-determinism.�e huge range of scheduler

choices can be adequately modeled by a deterministic function that has a �xed but
unknownvalue.�is formalization enables e�cient deduction. Relating di�erent runs
of the scheduler can be achieved by incorporating di�erent “don’t-knows”.
Describing a domain algebraically is better than giving an enumeration. Descrip-

tions allow us to postpone reasoning until a maximum of information is available. At
this point, some distinctions may have become irrelevant. It might also be possible
to apply powerful simpli�cation laws. If everything else fails, it is still not too late to
produce an explicit enumeration.
Completeness is a desirable property, but a proof system need not be always e�-

cient. It is enough if the system is e�cient on benign cases. Modern programming
languages may o�er obscure features and means to write very complicated programs,
but programmers’ ability to use them correctly still remains limited. Failing to �nd a
correctness proof with a su�ciently developed proof system is o�en a sign that some-
thing is wrong with the program to be veri�ed.
Atomicity failure is a better notion than data race. �e absence of data races

is, in general, neither su�cient nor necessary for correct multi-threaded programs.
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Furthermore, the correct level of atomicity for an application is always domain-
dependent. Data race de�nitions do not take this into account.
Currently, deductive veri�cation can o�er advantages for veri�cation problems

that are data-centric or that involve an unbounded number of threads. At the same
time, a convergence of deductive veri�cation, static analysis and model checking can
be noted. Latest incarnations of static veri�ers and model checking frameworks suc-
cessfully incorporate symbolic execution techniques andmake use of theoremprovers
and theory solvers. On the other hand, deductive veri�ers are adapting static analysis
techniques and optimizations originally developed for model checking.



Part III

Must Program Veri�cation Systems and Calculi Be

Veri�ed?





Typographic Conventions

�e following symbols have a di�erent meaning in the following Part:

T denotes in the following a so-called domain theory. A theory is a set of formulas
of the underlying logic.�ese formulas are called axioms.
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Ensuring Reliability of Reasoning in Program

Veri�cation

Mechanized deductive reasoning involves many ingredients. Among these are a de-
duction calculus, a reasoner implementation, domain-speci�c theories, and user in-
put. All of these ingredients can contribute to a reasoning failure.�e problem is espe-
cially acute when reasoning over large domain theories, such as formal programming
language semantics. We analyze how di�erent methods combat di�erent modes of
failure. In particular, we raise the question of self-application of reasoning-based for-
mal methods as a means to ensure reliability. We summarize the situation in the KeY
project and give recommendations based on our experience in design of veri�cation
systems.

9.1 Introduction

Deduction is reasoning about models or abstractions of—sometimes purely mathe-
matical butmostly real and practical—aspects of theworld. Tousemechanized deduc-
tion, we have to do two things. First, we have to formalize a given real-world problem,
the domain knowledge, and the domain laws in a suitable logic. On the formal level,
this gives us a query ϕ, which is a formula of the logic, and a domain theory T , which
is a set of formulas (axioms). Second, we ask the question whether the theory logi-
cally entails the query (“⊧T ϕ ?” or “T ⊧ϕ ?”).�e answer to this question is usually
computed by means of a calculus implemented in a computer system (“T⊢ϕ ?”).

�e two-step process outlined above implies that the issue of reliability of reason-
ing is actually twofold. On the one hand, the reasoning must be formally correct, i.e.,
⊢ must correctly implement ⊧. On the other hand, the reasoning must be adequate,
i.e., T and ϕ as well as ⊧must represent reality in the intended way.

�e latter part of the issue—adequacy—is the controversial one. It is possible, and
indeed has been long customary, to consider the theory T as being part of the input
to the reasoning system in the same way as the query ϕ, and as opposed to being part
of the system in the same way as ⊧ resp. ⊢. In other words, one asks the question
“⊧(T→ϕ) ?” instead of “⊧T ϕ ?”, thus making the adequacy of T a “somebody else’s
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problem”. We argue that drawing the system boundaries in such a way is not a good
solution as it’s simply o�oading the problem into the area of usability.

�e reasoning community must deal with both correctness and adequacy in or-
der to be successful in practice. As mechanized deduction gains power to tackle more
complex problems, the inadequacy of large domain theories outgrows incorrectness
as the primary source of undesired results.�is �nding is corroborated by our expe-
rience in building so�ware veri�cation systems, but the problem also persists in other
domains.

�ere is already a huge body of work on the design of both correct calculi and
adequate theories. Mostly, however, a particular calculus or a particular domain is in-
vestigated. Wewant to take a more general point of view.We investigate how di�erent
validation methods—both formal and conventional, from veri�cation to testing—are
best used to ensure seamless reliability of the reasoning process, how di�erent meth-
ods relate to each other, and which methods are best suited to uncover which kind of
faults.
Discussions and some reactions we got to talks on this subject show that the ques-

tion of how best to ensure reliability of deduction systems is o�en fraught with ide-
ological arguments, such as “If you build a program veri�cation system, you have a
moral obligation to formally verify it.” With this work, we neither try to reject such
arguments as wrong nor as irrelevant, but intend to put the discussion on more solid
ground. If reasoning technology is to be used in practice, the developers have to be
able to explain to users (and certi�cation agencies) why their reasoning process is re-
liable in its entirety.1 And they have to know how and where resources are best spent
to improve the systems.

�e structure of this chapter is as follows. In Section 9.2, we clarify some notions
related to the reliability of reasoning. Such a clari�cation is important as a clear un-
derstanding of the di�erences between notions such as reliability and correctness or
fault and failure is important for the following discussions (and is o�en ignored in
the reasoning community).�en, in Section 9.3, we describe the particular problems
of ensuring reliability of large domain theories. In Section 9.4, we de�ne and discuss
di�erent methods and their e�cacy for validating reasoning systems, calculi, and the-
ories. In Section 9.5, we report how we ensure reliability of our own veri�cation sys-
tem and discuss the role of competitions. Finally, in Section 9.6, we summarize our
recommendations for ensuring reliability of the reasoning process.

9.2 Clari�cation of Concepts and Notions

9.2.1 Dependability and Reliability

Dependability of a computing system is the ability to deliver service that can justi�-
ably be trusted [Avižienis et al., 2000]. While dependability of deductive reasoning
systems is important, the exact requirements are substantially di�erent from other

1 Very interesting research in this direction is carried out by Denney and Fischer [2005].
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Figure 9.1. A reasoning reliability ontology

critical so�ware. What users demand of dependable reasoning systems is in the �rst
place reliability, i.e., a high probability that the systemwill perform requests as desired.
Other aspects of dependability, such as con�dentiality or safety, are not considered es-
sential for reasoning systems.

9.2.2 Faults and Failures

Dependability research distinguishes between faults, errors, and failures. In the classi-
�cation of [Avižienis et al., 2000], an error is a part of the system state that can cause
a failure. A failure occurs when an error reaches the service interface of a system and
alters the service. A fault is an adjudged or hypothesized cause of an error. A fault is
active when it produces an error and dormant otherwise. Fault activation is the appli-
cation of an input (the activation pattern) to the system that causes a dormant fault to
become active.
As stated in the introduction, reasoning systems can su�er from two kinds of fail-

ures. A correctness failure is when the system reports the wrong answer to the ques-
tion “T⊧ϕ ?” Correctness failures are caused by faults in the calculus or its implemen-
tation. An adequacy failure is when the system reports the correct answer to “T⊧ϕ ?”,
but a problem with T , ϕ, or ⊧makes this answer unfaithful to the real-world domain.
In the same way as only one aspect of dependability, namely reliability, is re-

ally essential for reasoning systems, only one kind of failure is really critical, namely
unsignaled failure. While a crash of avionics so�ware is unacceptable, a crash of a the-
orem prover may be annoying but is in general not harmful. In this vein, any failure
that is evidently out of the norm is tolerable in a reasoner.
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Figure 9.2. Faults, errors and failures

9.2.3 Ingredients of the Reasoning Process and their Faults

As mentioned above, the following main ingredients play a role in what answer is
produced by a reasoner:

Calculus. �e deduction calculus can have faults, in particular if it employs complex
techniques for reducing the search space (e.g., lemma generation) or if the logic
is non-standard (e.g., several di�erent kinds of modalities).

Implementation. �e implemented system that executes the calculus can have faults
not only in the way it applies rules but also in functionality on which rule appli-
cation relies, such as Skolemization, term indexing, or uni�cation.�ere can also
be faults in the proof search procedure that lead to incompleteness.

Domain-speci�c theories. Large domain-speci�c theories (examples of which range
from a formal speci�cation of programming language semantics to a domain on-
tology2) are the biggest source of failures in mechanized deductive reasoning.
�ey may be inadequate (i.e., not re�ecting reality) in two ways: being too strong
or too weak. A theory is too strong when it excludes desired models and too weak
when it allows undesired models. Note that one part of a theory can be too strong
while another part is too weak at the same time.We explore these notions inmore
depth in Section 9.3.
Sometimes a theory used by a reasoner is “unnecessarily” large. For instance, it
may be possible to axiomatize some mathematical domain by a small set of ax-
ioms, but a reasoner uses a larger though equivalent set of axioms for e�ciency
reasons. In this case, the adequacy problem turns mostly into a correctness prob-
lem. Even though the correctness problem still needs to be handled, this is a bet-
ter situation than with many theories that are not derivable from small axiom sets
(e.g., ontologies).

User input. �e input to the system is the query posed by the user (e.g., a program
piece to be veri�ed and its speci�cation, or a query submitted to a semantic web
reasoner). A query submitted by the user to the system can be inadequate (i.e., it
does notmean what the user thinks it means) or even vacuous (trivially satis�able

2 A theory of a programming language may formalize its semantics in a number of di�er-
ent forms. Examples are: a structural operational semantics, a program logic, a veri�cation
calculus, etc. We have stated three such theories for a concurrent JAVA-like language in this
thesis: in Chapters 4, 5, and 6 respectively. Obviously, our main interest is directed towards
theories used in veri�cation, but our remarks are not limited to this area. We will also brush
the topic of ontologies, which are among the largest domain theories used for mechanized
reasoning today.



9.3 �e Problem of �eory Adequacy 123

in an unintended way3). Faults in the input have been neglected in deduction
research for a long time.�e study [Beer et al., 2001], however, indicates that up
to 20% of properties submitted to a model checker in practice are vacuous and
that such “trivial validity always points to a real problem in either the design or its
speci�cation or environment”. Furthermore, the study reports adequacy problems
with up to 10% of non-vacuous properties.

Note that the distinction of ingredients is conceptual. Concrete systems may incor-
porate these ingredients in di�erent guises.�e same domain theory can be encoded
in form of logical formulas in one system (T⊢ϕ), be part of the basic calculus in an-
other (⊢T ϕ), or be hard-coded in the implementation of a decision procedure in a
third.�is polymorphism does not invalidate our remarks.

9.3 �e Problem of�eory Adequacy

9.3.1 �e Lack of Formal Semantics

If the domain that a theory formalizes is itself formally de�ned, it is possible to for-
mally prove its adequacy—even if that may be a di�cult and tedious task.
Formathematical domains, a formal reference de�nition is usually available, while

that is hardly possible for theories that formalize an aspect of the real world (such as
ontologies).
Domains fromcomputer science applications usually lie in between. Most of these

domains involve formal languages, but in practice a formal de�nition is o�ennot read-
ily available. For example, hardly any programming language in wide use today has
an o�cial formal semantics. For instance, there is no o�cial formal semantics of the
Java programming language. SunMicrosystems, the holder of the Java trademark, de-
cides what constitutes a valid Java implementation within the framework of the Java
Community Process. It is required that every such implementation adheres to the Java
Language Speci�cation, which is a precise but informal document. Conformance is,
in particular, checked by a compatibility test suite.
Many research groups have come up with their own formal semantics of (frag-

ments of) the Java language.4 Ultimately, there is no formal way to judge whether any
of these semantics is adequate, i.e., re�ects the o�cial informal speci�cation correctly.
Verifying one theory of Java against another is helpful, but some doubt will always re-
main about whether both theories are correct w.r.t. the o�cial language speci�cation
and its implementations (compilers, virtual machines), which is what counts in prac-
tice.
Consequently, other methods such as testing the theory using a large number

of programs (e.g., a compiler test suite like [Jacks]) can lead to the same—or even

3 For instance, the temporal assertion that every request is followed by a response is vacuously
true in a model with no requests.

4 Beckert et al. [2007]; Jacobs andPoll [2001c]; Poetzsch-He er andMüller [1999b]; vonOhe-
imb [2001a]; Zee et al. [2008]; Marché et al. [2004], and many others.
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a higher—degree of reliability w.r.t. the informal language speci�cation as a formal
proof.

9.3.2 �e Problem of Too Strong�eory

�eories may be too strong and thus exclude desired models. From the logical per-
spective, the interesting case of a too strong theory is an inconsistent theory. While it
is perfectly sound to derive any formula from an inconsistent theory, this is clearly not
what the users of deduction systems want. Deduction must not leave this problem out
of consideration.�ere is a number of reasons for inconsistencies in domain theories:

• One reason ismisunderstandings and clericalmistakes.When detected, these can
be easily �xed.

• Another reason is a problem in the domain itself. For example, an important
part of the Java Language Speci�cation is the Java Memory Model. Lately a semi-
formal de�nition of the model was adopted by Sun [Manson et al., 2005b]. Re-
cent research [Aspinall and Ševčík, 2007; Huisman and Petri, 2007], however,
has shown that the proposed model is inconsistent, and there is also no obvious
“�x” to the problem. Domain experts agree though that there is a fragment of the
model that is safe for programming and reasoning.

• Yet another reason lies in the size of the theory and its authoring process. In the
domain of semantic web, very large ontologies are routinely produced by combin-
ing several smaller ones. Rigorously ensuring the consistency of the result is—in
this domain—o�en impractical. It is to be expected that large ontologies will con-
tain inconsistencies [Huang et al., 2005].

It remains an open research question, how to build deduction systems so that in-
consistencies are detected, and if not—the probability remains small that a wrong
(inadequate) answer is derived.

9.3.3 �e Problem of TooWeak�eory

�eories may be too weak and thus admit models undesirable in practice. We distin-
guish two basic sources of theory weakness: missing features and the chosen level of
abstraction.
It is likely that a large domain-speci�c theory does not cover some features of the

domain.�is incompleteness manifests itself as failure to verify correct programs or
inability to answer queries over particular vocabulary. When solving this de�ciency
by incorporating an additional ontology or extending the language semantics it is of-
ten impossible or impractical to guarantee consistency of the result. Still, practitioners
might prefer a veri�cation system that is 99% correct but covers all of the program-
ming language to a 100% correct system that covers only 75% of the target language.
Furthermore, theories only capture reality up to a certain level of abstraction.

Practitioners know that veri�ed so�ware may still fail.�is can happen because the
so�ware is part of a larger system that fails (compiler, operating system, hardware);
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or because the veri�cation assurance does not cover an important aspect, such as se-
curity, quality of service, or, in particular, fault tolerance of the whole system.�us,
formally veri�ed correctness never leads to absolute reliability. Nothing is 100% reli-
able in the sense that it does never fail.

9.4 Di�erent Ways to Reliability of Reasoning

9.4.1 ConventionalWays to Reliable So�ware

Practitioners know that formal methods are not the only way to reach a high level
of dependability and, in particular, reliability. High dependability of so�ware used in
practice can be achieved with testing and experience from long-term use as well.

�e aviation industry, which has a high level of reliability in all its systems, is a
good example. A very important measure used to achieve this reliability is the careful
investigation and analysis of accidents (failures) and immediate feedback to design
and operation. �e use of well-matured technology also contributes to keeping the
reliability level [Sakugawa et al., 2005]. Aviation industry also has universal regula-
tions for the use of so�ware in airborne systems. One part of these regulations is the
guideline DO-178B [RTCA, 1992]. It lists objectives (for di�erent levels of criticality)
that a piece of so�ware must satisfy in order to be certi�ed for airborne use. With the
increasing level of criticality, the total number of objectives increases, as well as the
number of objectives that have to be satis�ed “with independence”, i.e., the validation
activity has to be performed by a person other than the original developer.�e main
activity used to validate avionics so�ware is rigorous testing. Reasoning-based formal
methods are permitted but neither required nor su�cient by themselves. In general,
DO-178B states that “formal methods are complementary to testing”.
Complementarity is good for yet another reason. While dependability is about

justi�able trust, trust is still a social process.�us, introducing a technology (such as
reasoning-based methods) cannot be done abruptly but requires a step-wise process.
�e new technology has to be evaluated in practice, even if it has been formally proven
correct. When it is introduced, it has to be compared to and supported by well-known
and trusted techniques (such as testing).�is is the only way to ensure adequacy.

9.4.2 Measures Against Faults in Reasoning Systems

�e reasoning community o�en favors a self-application of reasoning-based formal
methods to ensure reliability of its tools, but conventional methods like testing and
using mature technology are also useful. In reality, both kinds of methods are com-
plementary and a balanced mix is necessary to achieve reliable systems.
Below, we survey di�erent means to validate the ingredients of the reasoning pro-

cess.
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Measures against faults in the calculus

Formally verifying the (core) calculus, i.e., proving that ⊢=⊧ or at least ⊢⊂⊧, is an
e�cient method for removing faults.�is assumes that the logic used for deduction
has a well-established formal semantics (i.e., a de�nition of ⊧), against which veri�-
cation can be done.�is is o�en the case. If the core calculus is relatively small, its
correctness proof can even be performed with paper and pencil (e.g., [Beckert and
Platzer, 2006b]).
Of course, a calculus can also be tested.�e answers it gives for test queries are

compared with answers known to be correct and/or adequate. Usually, this is done as
part of testing the calculus implementation (see below).

Measures against faults in the implementation

Verifying the reasoner implementation (with a program veri�cation tool) is a possibil-
ity even though rarely practical due to the large size of the reasoner.�e size problem
can be alleviated by employing and verifying a proof checker—a small program that
only has to check proofs and not �nd them. It is a common misconception, though,
that a veri�ed reasoner or proof checker makes reasoning completely reliable.�ese
methods can avoid resp. detect faults of the implementations, but they do not mitigate
adequacy problems in the domain theories.
Testing and service history also can assert reliability of the implementation. For

example, people do believe in the correctness of Isabelle [Nipkow et al., 2002; Isabelle],
even though the implementation is not veri�ed (neither is the implementation of ML
veri�ed, etc.).�at shows that at some point, even formal methods people stop ver-
ifying things that are well tested. Testing, here, means submitting queries ϕ to the
implementation and comparing the answer to the de�nition of ⊢ϕ (correctness of the
implementation w.r.t. the calculus), to the de�nition of ⊧ϕ (correctness of the calcu-
lus), and/or the expected answer (adequacy).
A good source of test cases for provers for non-program logics are the various

benchmark suites, such as:

• the TPTP library [Sutcli�e and Suttner, 1998] (for �rst-order logic)
• the SATLIB library [Hoos and Stützle, 2000; Hoos and Stützle] and the problems
used in the International SAT Competition [Le Berre and Simon] (for proposi-
tional logic)

• the ILTP library [Raths et al., 2007; Raths et al.] (for intuitionistic logic)
• the QBFLIB library [Giunchiglia et al.] (for quanti�ed boolean formulas)
• the SMT-LIB library [Ranise and Tinelli, 2006; Barrett et al.] (for satis�ability-
modulo-theories problems).

�e suites can be used for evaluating both the performance and the reliability of sys-
tems.

Measures against faults in the domain theories

It is possible to verify a domain theory T formally against another formalization T ′

of the same domain. In program veri�cation, for example, academia has put a lot of
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e�ort into “soundness proofs” of veri�cation calculi.5 ,6 Such “soundness proofs” are in
reality adequacy checks for theories of programming languages.�ey are well-suited
for �nding most kinds of faults, however complex or obscure. In domains, for which
an o�cial formal semantics T ′ is available, it is even possible to guarantee adequacy.
In other domains (and these are more common), a proof that T and T ′ are equiv-

alent or that T is a re�nement of T ′ is still useful, but it may fail to uncover adequacy
faults.�e chances that this happens increase if both formalizations T and T ′ as well
as the equivalence proof are made by the same person.�is renders the fault detection
process less e�ective due to the increased probability that the author has misunder-
stood the domain, and that both theories are inadequate in the same way.�erefore,
if theories are veri�ed, they should be cross-veri�ed against other people’s formaliza-
tions of the domain laws. With cross-veri�cation, the probability of uncovering faults
is much higher.7

An underestimated way to ensure reliability of theories is testing. Testing means
evaluating the relation T ⊢ϕ for a number of queries ϕ and comparing the results
with known adequate answers. Testing is good for uncovering misunderstandings.8 It
is much easier to detect faults with a test suite written by other people than to cross-
verify a theory. For many domains, test suites are readily available as their creation
does not require formalizing the domain laws. Note, however, that it is important to
use both derivable and non-derivable queries for testing.
Testing may, of course, fail to �nd faults with complex or rarely occurring activa-

tion patterns. Nonetheless, tests build trust among the users of the system. Further-
more, tests validate a system on all levels simultaneously. It is also easy to redo tests
automatically when any part of the system is modi�ed. Re-doing a veri�cation proof
may be di�cult and require interaction and/or a proof-reuse mechanism.

5 “A Hoare logic that is unsound would be useless since its very purpose is to verify correct-
ness of programs.�us a�er giving a Hoare logic the proof of its soundness is obligatory, in
particular when—like in our case—the rules are rather involved and thus their correctness
is by far not obvious.” [von Oheimb, 2001b]

6 “�e proof rules are speci�ed in KIV and their correctness with respect to the [own] seman-
tics has been proved. [. . . ] All 57 rules have been proved correct.�e speci�cation and veri-
�cation e�ort required several months of work. [. . . ] As can be imagined several errors were
found during veri�cation. Most of them are errors only for type incorrect programs.” [Sten-
zel, 2005]

7 �e UK Defence Standard 00-55 “Requirements for Safety Related So�ware in Defence
Equipment” [UK Ministry of Defence, 1997] demands that “[. . . ] there should be at least
a peer review of the proof obligations and formal arguments [by a member of the team]
other than the author [. . . ]”.

8 “However, both semantics and calculus could be wrong. It is possible to validate the seman-
tics by ‘running’ test programs in KIV (automatically applying the proof rules) and com-
paring the output with a run of a Java compiler and JVM (currently 150 examples), and this
certainly increases con�dence in the semantics [. . . ]” [Stenzel, 2005] (the author goes on to
argue that both testing and veri�cation of the calculus are needed).
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Measures against faults in the user input

User input is, by its very nature, not part of the reasoning system.�e formulation of
queries is, however, part of the reasoning process and, thus, the adequacy of queries
is relevant for the process’s reliability.
A fault in user input is present whenever the query ϕ does not mean what the user

thinks it means. A correct answer to the question “T ⊢ϕ ?” will in this case not have
the expected impact in the real world.
User input cannot easily be veri�ed or tested. But, apart from many systematic

approaches for elicitation of requirements or construction of ontologies (which we
will not cover here), there is a number of ways in which deduction technology can
assist the user to formulate meaningful queries.
First, the builders of deduction systems can work on formalisms that do not make

it unnecessarily hard for the users to express their exact intentions. Second, the deduc-
tion systems can produce a proof or a trace to justify the deduction result. Inspection
of the proof is a very e�ective—if costly—measure to combat misunderstandings in
the meaning of the query.

�ird, a whole new class of sanity checks based on mutation has been developed
lately for automated program veri�cation [Kupferman, 2006]. A�er a successful ver-
i�cation attempt, the query (the program or the speci�cation) is mutated and the de-
duction is repeated. If veri�cation succeeds again, then the mutated part of the query
probably plays no role in determining the outcome.�is indicates a problemwith the
query.

9.4.3 Scalability of Fault Removal Approaches

When choosing a validation method, one needs to consider its scalability.�ere are
two things that can make it hard to �nd a particular fault in a system: the size and
complexity of the system and the “complexity” of the fault.�e latter is a function of
how complex and how rare an input is that activates the fault and causes a failure.
Validation methods must be su�ciently scalable in both dimensions.
An additional factor to consider is how easy it is to re-validate a system, i.e., to

reuse and adapt a correctness proof or to re-run tests, when a part of the reasoning
system is changed or used in a di�erent con�guration (as both happens frequently in
practice).

�e scalability of theory validation depends on the domain. For example, when
validating a theory of a programming language, no scaling-up in size is required, since
the size of the theory is �xed or at least clearly bounded.�e validation method has
to be able to handle a theory of that particular size. Scalability becomes relevant again
when theories of standard libraries are added to the system. Java programs, for in-
stance, rely heavily on libraries shipped with the language.�e good news is that li-
braries are independent from each other and from the core language. Adding a theory
for a library does not create faults in other theories.�is emphasizes the importance
of modularization when dealing with large-scale problems.
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Ameasure for the complexity of faults (i.e., the second dimension of scalability) in
a programming language theory is the number of language features that are involved.
For example, the rule for handling while-loops in Java has to consider the possibility
that the loop body throws an exception and, thus, terminates abruptly. If the loop rule
is faulty and does not cover the case of abrupt termination, then this problem can only
be foundwith a test case involving both features: while-loops and exception throwing.
Finding very complex faults is di�cult to do by testing.�is problem is mitigated,

however, by the fact that programming languages are designed for humans by hu-
mans. Language designers try to make individual features as independent as possible,
since otherwise the language is hard to understand and use for programmers. Alto-
gether, the question of scaling along the fault complexity dimension is an argument
in favor of verifying the veri�cation system—but not a very strong one.

�e situation ismore problematicwith ontologies.Modern ontologies dwarf other
theories in size, and the domain they model is, in most cases, part of the real world
and not human-designed. Faults can thus span a large number of features (concepts).
Even if a modularization of the domain is possible, it is o�en not readily available.
Moreover, ontologies tend to change and evolve quickly.

9.4.4 Consequences of Residual Faults

Since attaining a fault-free system is very di�cult, wemust consider the consequences
of residual faults.�e most problematic fault class are catastrophic faults, i.e., faults
that lead to the system performing arbitrary deductions. �e biggest potential for
catastrophic fault lies, in our experience, in the core calculus of the system (e.g., a
faulty induction or Skolemization rule).�erefore, the core calculus has to be vali-
dated to the highest reliability levels.
In theories of programming languages, on the other hand,most of the (numerous)

axioms correspond to particular features of the language.�erefore, the e�ects of a
fault inmost cases remain localized and donot lead to catastrophe.�at is, veri�cation
proofs for (parts of) programs not containing the particular feature are not a�ected,
which may be the very reason why a fault remains undetected.

�e sheer size and the dynamic nature of ontologies may prevent e�ective fault
removal.�us, development of techniques for non-trivial reasoning with faulty, and
in particular inconsistent, ontologies is still a hot research topic [Huang et al., 2005].
Possible solutions include paraconsistent logics, multi-valued logics, reasoning with
consistent subsets of a theory, etc.

9.5 Finding Faults in Practice

9.5.1 �e Situation in the KeY Project

�e KeY tool is a mature and established veri�cation system for Java with high cov-
erage of the language.�e KeY team has stated only one theory of Java (i.e., the KeY
calculus). We have refrained from stating two theories and proving their equivalence.
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Resources saved on this were instead spent on further improvement of the system.
At the same time, the KeY project performs ongoing cross-veri�cation against other
people’s Java formalizations to ensure adequacy.
One such e�ort compares the KeY calculus with Bali [von Oheimb, 2001b], which

is a Java Hoare Logic formalized in Isabelle/HOL.�e published result [Trentelman,
2005] describes in detail cross-veri�cation of the rules for local variable assignment,
�eld assignment and array assignments.�ese rules are of particular importance to
every Java theory.�e KeY rules were translated manually into Bali rules, and these
were then proven sound with respect to the rules of the standard Bali calculus.�is is
how the missing check for an ArrayStoreExeption in the array assignment rules
was detected (⇒ Sect. 10.8.6).
A di�erent approach has been taken by Ahrendt et al. [2005b]. It takes as a ref-

erence another Java semantics [Farzan et al., 2004], which is formalized in Rewriting
Logic and mechanized in the input language of the Maude system.�is semantics is
an executable speci�cation, which together with Maude constitutes a Java interpreter.
�e nature of this semantics made it particularly suitable for verifying program trans-
formation rules of KeY.�ese are rules that decompose complex expressions, take care
of the evaluation order, etc. (about 45%of theKeY calculus). For the cross-veri�cation,
the Maude semantics was “li�ed” in order to cope with schematic programs like the
ones appearing in KeY.�e rewriting theory was further extended with means to gen-
erate valid initial states for the involved program fragments, and to check the �nal
states for equivalence.�e result is used in frequent completely automated validation
runs, which is bene�cial, since the KeY calculus is constantly extended with new fea-
tures.
Furthermore, the KeY calculus is regularly tested against the compiler test suite

Jacks [Jacks].�e suite is a collection of intricate programs covering many di�cult
features of the Java language.�ese programs are symbolically executed with the KeY
calculus and the output is compared to the reference provided by the suite.�is ap-
proach has also been taken by others [Stenzel, 2005].
All of the above methods have found faults in the KeY system (in the calculus, in

the Java theory, and in the implementation), while none of the methods alone would
have been su�cient to uncover them all. A balanced mix of validation methods is
necessary to attain high reliability at reasonable costs. In our experience, an important
role is also played by good so�ware engineering practices, such as extensive unit tests,
bug tracking, peer review of code, etc.

9.5.2 Reliability and Deduction System Competitions

Most competitions for reasoning systems today assume that reliability is something
that systems must have by de�nition. Wrong answers are o�en considered an em-
barrassment for both the system implementors and the competition. Both the rules
of CASC [Sutcli�e, b] and the SAT Competition [Le Berre and Simon], for instance,
state that a system exhibiting unsoundness will be disquali�ed. Competitions, how-
ever, should acknowledge that reliability is a criterion for comparing systems. �e
SMT-COMP [Stump] competition already does this.
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�e history of CASC shows that many participating systems have soundness
faults, which is not surprising as developers always submit the latest versions of their
systems. Since 1996, when the �rst CASC was held, 27 systems were disquali�ed in
12 installments of CASC [Sutcli�e, a] (an average of two per year) because they failed
a soundness test by giving a wrong answer to at least one problem from the TPTP
library. More faults probably existed in the participating systems but remained unde-
tected.
Of course, a systems exhibiting unsoundness should not win a competition. But

instead of merely disqualifying a faulty system, one should investigate the reasons and
publish the detailed �ndings of the investigation so that othersmay learn how to avoid
such faults.

9.6 Recommendations

As a conclusion, we summarize our recommendations for ensuring reliability of rea-
soning systems, in particular if they use large domain-speci�c theories.

�ere is a trade-o� between reliability and other qualities.

Reliability is a critical property for reasoning systems. But there are other important
qualities as well: functionality, dependability (of which reliability is one aspect), us-
ability, performance, and cost.9 Moreover, reliability is a measure of probabilities: no
system is 100% reliable. Consequently, reliability is not an absolute, but there is a trade-
o� between reliability, i.e., probability that the right answer is given, and other prop-
erties of the reasoning system. All properties should be considered when the quality
of a system is evaluated.
When developers think about how they should improve their system, they should

analyze which kinds and what frequency of failures would be acceptable to the users.

Reliability is a gesamtkunstwerk.10

All ingredients of the reasoning process contribute to its reliability. Validation of all
ingredients should be taken into consideration. One cannot claim reliability just by
proving the calculus to be sound if the implementation has not been thoroughly
tested.
Also, deduction systems should be built such that they support the search for in-

adequacies in domain theories or queries.

9 “Of course, a theorem prover should be sound. [. . . ] However, also e�ciency is an important
consideration in the design. If a tool is sound, but too slow, it is not useful for veri�cations
of larger systems. Also, as explained above, even though PVS contains soundness bugs, it
is still a great help in speci�cation and veri�cation, since most of the time it works ‘cor-
rectly’.” [Huisman, 2001a]

10 �e term gesamtkunstwerk, which might be translated from German as “synthesis of the
arts”, is commonly used to describe any integration of multiple art forms.
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Both formal and conventional validation methods have their strengths and their

weaknesses.

Neither conventional nor formal methods are inherently superior. �e reasoning
community has to be at the forefront of users of formal methods, but practitioners
using conventional methods also have a point. We should use a balanced mixture of
both approaches.

Use cross-veri�cation.

If theories are veri�ed, they should be cross-veri�ed against other people’s formaliza-
tions of the domain laws.With cross-veri�cation, the probability of uncovering errors
is much higher.

Do not draw the system boundaries arti�cially tight.

One should not turn adequacy of the domain theory or the query into a non-issue
or somebody else’s problem by de�ning the theory or query to be outside the system’s
boundaries.�at does not solve the problem ofmaking the reasoning process reliable.

Investigate and publish the reasons for failures.

�e reasons for failures should be investigated, and immediate feedback to design and
operation should be given.�e investigation should go beyond �nding the fault that
caused the failure. “Why was the error made in the �rst place?”, “how could it have
been avoided?” and, “why wasn’t it detected before?” are also important questions.
�e �ndings of the investigation should be published so that others may learn how to
avoid errors of the same kind.
Also, being open about failures and the faults causing them (as opposed to hiding

them as an embarrassment), builds trust among the users of the system.

Reliability should be a criterion in competitions.

Competitions for reasoning systems should treat reliability as a (high-impact) cri-
terion for system quality.�ey may bar unsound systems from winning but should
report their performance results together with an analysis of the soundness problem
and its impact.

We are thankful to the anonymous Reviewer 1 for very helpful comments on an earlier ver-
sion of this text.



Part IV

Managing Change in Deductive Program Veri�cation





10

Applying Proof Reuse in the Veri�cation Cycle

Experience shows that the prevalent use case of program veri�cation systems is not a
single prover run.Most of the time veri�cation engineers iterate veri�cation attempts.
�is happens for a plethora of reasons, such as a �xed bug in the code, an extension
to the program, a revised speci�cation, a new try a�er a failed proof attempt, or even
a change in the proof system itself.
In such a case, if the change is small, it is o�enbetter to adapt and reuse the existing

partial proof(s) than to verify the program again from �rst principles. A particular
advantage of proof reuse for interactive veri�cation systems is that it can reduce the
total number of user interactions.
Here we present such a technique for proof reuse. We have developed this tech-

nique earlier to help recycle proofs a�er �xing bugs (this is indeed the scenario that we
will use to explain the technique). New in this thesis is how our method can improve
the user experience for a whole range of everyday veri�cation scenarios.
A�er discussing the features of the method, we will introduce a small running

example, cover the theoretical and practical details of proof reuse, examine other so-
lutions to the problem, and �nally survey a wide range of proof reuse applications in
deductive veri�cation of JAVA so�ware.

10.1 Introduction

Features of Our Reuse Method

�e main features of our reuse method are:
(1)�e units of reuse are single rule applications.�at is, proofs are reused incre-

mentally, one proof step at a time1 .�is allows us to keep ourmethod �exible, avoiding
the need to build knowledge about the target programming language or the particular
calculus rules into the reuse mechanism. Another consequence of this feature is the
guaranteed soundness of proofs, since the usual rule application mechanism of the
prover is used for proof construction.

1 Alternative approaches are discussed under “related work” (⇒ Sect. 10.7).
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(2) Proof steps can be adapted and reused even if the situation in the new proof is
merely similar but not identical to the template.
(3) In case reuse has to stop because a changed part in the new program is reached

that requires genuinely new proof steps, reuse can be resumed later on when an un-
a�ected part is reached.�e system detects when this is the case.

A Review of Basic Notions and De�nitions

At this point, we review some important calculus-related notions from Section 2.5.
As usual, we assume that rules are represented by rule schemata. Rule instances are
derived from rule schemata by instantiating schema variables. In the following, we
identify rules and their schema representations.
A proof for a goal (a sequent) S is a tree with S at the root. A proof is constructed

by matching an open goal with the conclusion of a rule and extending the tree at this
point with child nodes (sub-goals) corresponding to the premisses of the rule. Rules
without premisses (axioms) �nalize this process at a given goal. A rule application,
thus, consists of a rule instance and a node in the proof tree that is a logical conse-
quence of its child nodes via this instance.
Most rules have a focus, i.e., a single formula, term, or program part in the con-

clusion of the rule that is modi�ed or deleted by applying the rule.�e focus of the if

rule in Section 2.7.2, for example, is the if-statement. An example for a rule that does
not have a focus is the cut rule; it can be applied anywhere.

A Running Example

We now motivate our approach using a simple example. While utterly contrived, this
example iswell-suited to give insight into the setting and themechanics of proof reuse.
Consider the following program:int x;int res;res=x/x;

JAVA

Its intended behavior and speci�cation is that it should always terminate with res
set to 1.�e program, however, contains a bug and cannot be proven correct, since
an arithmetic exception can be thrown on division by zero.2 Figure 10.1 (a) shows the
beginning of the failed correctness proof. It has one open branch (the “division by
zero” branch) where an exception is thrown.�e other branch (the “normal execu-
tion” branch) can be closed. We will use this proof as a template for reuse and refer to
it as “old proof ”.
We now amend the program and obtain the following “new” version:

2 In fact, JAVA requires initializing the program variable x. However, here we treat x as if it
were an input parameter with unknown value.�e variable declarations play the role of the
leading program part that is not a�ected by the bug �x.
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JAVA

�is new program is correct w.r.t. the speci�cation. It always terminates with res set
to 1. Figure 10.1 (b) shows the beginning of the proof for this, which consists of a
completely new branch for the case that x is zero (shaded) and a “non-zero” subproof
that handles the division statement.

PSfrag replaementsint x;int res;
〈res=x/x; . . .

x AEx...x res=1;...

〈int x; . . .〈int x; . . .

〈int res; . . .〈int res; . . .

〈if (x==0) . . .

x = 0 →
〈res=1; . . .x 〈res=x/x;...x x = 0 → 〈AEx...x = 0 → 〈AEx... x 6= 0 →x 6= 0 →

x 6= 0 →

x 6= 0 → 〈res=1;...x 6= 0 → 〈res=1;...
Figure 10.1. Schematic proofs (a) before and (b) a�er program correction.�e le�most branch
of the old proof cannot be closed, since the program contains a bug. AEx is shorthand forthrow new ArithmetiExeption();
Comparing the old and the new proof we can see that there are parts that are in

some way common to both. We can also see that in the new proof these recyclable
parts are interspersed with proof steps that are genuinely new. Furthermore, the for-
mulas in the new proof are not always identical to their counterparts: some have ad-
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ditional premisses, but the similarity is discernible.�is is a common situation where
proof reuse is called for. We will return to this example and show how reuse works for
it in Section 10.6.

10.2 �eMain Reuse Algorithm

Basic ideas

As said in the introduction, we start with two versions of a program: an old one, and
a corrected new one. We also have two proofs in the system: the old, template proof
dealing with the old program—it may or may not be a complete proof—and an in-
complete new proof dealing with the new program. At the beginning, the new proof
is a tree of a single node.�is initial proof goal is constructed from the new program
and the speci�cation, which we assume to have remained unchanged.
For each application of the reuse facility—as for any interactive proof step—there

are choices to be made:

(a) the rule (schema) to be applied
(b) the focus of application, i.e., a suitable goal/position
(c) instantiations for schema variables.

On the one hand, our goal is to make in the new proof—if possible—the same choices
as in the template proof. On the other hand, we expect the two to have parts, which
evolve in a similar but not identical manner.�is requires us to generalize and extract
the essence of the above choices in the old proof.
For �nding the rules that are candidates for choice (a), such a generalization is

readily available.�e rule schemata are natural generalizations of particular rule ap-
plications. We then try to adhere to the overall succession of rule applications in the
template proof. But, since proofs are not linear, at each point in time there can still be
several candidate rules that compete for being used �rst.
Choice (b), i.e., the point where a given candidate rule is to be applied, is more

di�cult as it is hard to capture the essence of a formula or sequent. To solve this prob-
lem, we de�ne a similarity measure on formulas (⇒ Sect. 10.3). Fortunately, there is
usually only a moderate number of possibilities, because program veri�cation calculi
are to a large degree “locally deterministic”.�at is, given a proof to be extended, most
rule schemata only have a small number of potential application foci.

�ese combinations of candidate rules and their potential focus points—which
we call reuse pairs in the following—are ordered according to the similarity between
the potential focus in the new proof and the actual focus in the template proof.�us,
the similarity measure both implements the generalization for choice (b) and is used
to prioritize the rule candidates le� from choice (a).
Finally, tomake choice (c), schema variable instantiations are computed bymatch-

ing the rule schema against the chosen focus of application. Schema variables that do
not get instantiated that way, e.g., quanti�er instantiations, are simply copied verbatim
from the old proof.
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�e main algorithm

�e main reuse algorithm is shown in Figure 10.2. It maintains an unsorted list C
of distinguished rule applications in the template proof, which are the reuse candi-
dates. While reuse progresses and the new proof grows, those old rule applications
that are considered currently available for reuse are listed in C. In the beginning, C
is initialized with the list of initial candidates C0, which is computed by the function
initialCandidateList from the di�erences in programs.

input oldProof , oldProgram, newProgram, speci�cation;

newProof ∶= initialProofGoal(newProgram, speci�cation);
C0 ∶= initialCandidateList(oldProof ,∆(oldProgram, newProgram));
C ∶=C0;

while newProof has open goals do

⟨candidate, newFocus⟩ ∶= chooseReuse(C , oldProof , newProof );
if ⟨candidate, newFocus⟩ /=� then

newProof ∶= result of applying rule(candidate) at newFocus in newProof ;
if candidate/∈C0 then C ∶= C ∖ {candidate}; �;
C ∶= C ∪ {c ∣ c is a child of candidate in oldProof };

else

newProof ∶= applyRuleWithoutReuse(newProof );
�;

od;

output newProof ;

Pseudocode

Figure 10.2.Main reuse and proof construction algorithm

At each iteration step, the function chooseReuse is invoked to compute all potential
reuse pairs and choose the most appropriate one. A reuse pair consists of (1) a candi-
date rule application and (2) a potential new focus, i.e., a position in a goal sequent of
the new proof, where the same rule is applicable.�e implementation of chooseReuse
is shown in Figure 10.3.3 For the reuse pair selection process chooseReuse employs the
similarity function score, whichwill be discussed later on.�e function score is mainly
based on focus similarity.

3 We show a nested loop implementation for its clarity.�e actual implementation uses an
optimized incremental computation algorithm.
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function chooseReuse(list C of candidates, oldProof , newProof )

possibleReuses ∶= {};
Goals ∶= open goals of newProof ;

foreach c ∈C do

foreach g ∈Goals do

foreach position p in the sequent of g do

if the rule schema of c is applicable at p then

possibleReuses ∶= possibleReuses ∪ ⟨c, p⟩;
�;

od;

od;

od;

if possibleReuses={} then return � �;

select ⟨c, p⟩ from possibleReuses with score(⟨c, p⟩)maximal;
if score(⟨c, p⟩)> ε then

return ⟨c, p⟩;
else

return �;

�;

Pseudocode

Figure 10.3. Function for the best possible reuse pair

�e rule of the selected reuse pair is then applied at the target focus, extending
the new proof.�e candidate rule application is removed from the list C.4 Finally, the
children of the used candidate rule in the old proof tree become new candidates and
are added to C.
In other words: the proof steps appearing in the list C at a given time can be con-

sidered as marked in the template proof.�esemarkers form a “wavefront” extending
through the old proof tree during reuse.�e markers are indeed visible in the KeY
prover as -signs attached to nodes of the template proof tree.
So far, two very important questions remain open: how is the quality of possible

reuse pairs computed (i.e., how does the function score that is used by chooseReuse
work)? And where do the initial candidate proof steps come from (i.e., how does the
function initialCandidateList work)?�ese questions are answered in Sections 10.3
and 10.4, respectively. Note that our algorithm is “modular” in the sense that the an-
swers can be given independently.

4 Unless it is an initial candidate (i.e., an element of C0), in which case it is persistent in C.
�e reason for making the initial candidates persistent is explained in Section 10.4.
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Avoiding confusion: a quality threshold

While performing reuse, the danger is not only to do too little, but also to do “too
much”. Sometimes, even though there are possible reuse pairs available, it is better to
use none of them.�is is not so odd as it seems, since a reuse pair’s existence alone
means little more than a possibility of applying a single rule. Whether the rule is ap-
propriate in a particular context is another question.

�e most prominent opportunity for exercising restraint is when a genuinely new
situation in the new proof is reached. In this case we want reuse to stop, since reuse
pairs used up here would not in general be available when an una�ected proof part
is reached again.�is does not undermine the correctness of the proof under con-
struction (since the prover only allows correct rule applications), but it can confuse
the user and impede performance.
To safeguard against confusion, we compare the quality scores of reuse pairs to a

threshold value ε. In case the score of all possible reuse pairs is below ε—which is an
indication that we have reached a situation that is either di�erent or not present in the
old proof—a completely new proof step has to be chosen by the user or the automated
proof search procedure (this choice is symbolized by calling applyRuleWithoutReuse
in the algorithm). In the meantime, the system constantly checks whether reuse can
be restarted using one of the available candidates.

What to do with instantiations?

For some rules it is not su�cient to know where they will be applied (i.e., what their
focus is), but additional information is required. For example, (a) the cut formula has
to be known for an application of the cut rule, (b) for induction rules, the induction
hypothesis has to be known, and (c) for quanti�er rules, the appropriate instantiation
has to be provided. Since it would be a very hard task to adapt this kind of information
from the old rule application to the new one, we currently attempt to use the same
information as in the old proof.

10.3 Computing Rule Application Similarity

Recall that a possible reuse pair consists of a rule application in the old proof and a
focus (formula, term, or program) in the new proof where the same rule is applicable.

�e similarity score for quality assessment of possible reuse pairs is a key part of
our reuse facility, since it is one of the most crucial and di�cult parts in our e�ort.
We have to distinguish between proof parts that are appropriate for reuse in a given
situation and parts that only seem to be so on �rst sight. In other words, similarity
scoring must prevent mis-application of proof steps from the old proof that are not
appropriate for reuse.
When all possible reuse pairs have been computed for an iteration step of the reuse

algorithm, we are (usually) le� with a choice. Several features may in�uence the qual-
ity of a reuse pair.�e �rst and most important one is the similarity between the ap-
plication foci in the old and the new proof. How it is computed is described in detail
in the following, where we distinguish three kinds of rules:
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Rules for symbolic execution, which focus on a program. �e similarity score is de-
termined by comparing the focus programs in the old and the new proof.�e
non-program parts of the formulas in question are not considered, since in our
calculus they rarely provide additional discriminating evidence.

Analytic �rst-order logic and rewrite rules, whichmanipulate a (sub-)formula or term
without modifying program parts. A similarity analysis of the foci tailored to the
�rst-order fragment is performed.

Focus-less rules, which are the few rules of our calculus, that do not have a focus.�e
score of such a reuse candidate is solely based on other features, in particular
proof connectivity.

To get a single numerical quality value for a reuse pair, we sumup the scores computed
for di�erent features.

Similarity Score for Program Parts

We evaluate the appropriateness of symbolic execution proof steps by comparing the
programs that these steps focus on. In general, symbolic execution rules only touch
the �rst statement of a program. Our comparison is not limited to the �rst statement
though, the entire focus programs are considered as well.
A straightforward way to compare two programs is to compute the edit distance

between them, which is the length of the minimal edit script for turning one program
into the other. Since, for example, the particular names of variables, methods, etc.
have no e�ect on the structure of proofs, we use an abstraction of actual programs for
comparison.
Below, the following steps of the comparison are explained in more detail: (1) the

algorithm for computing the minimal edit script, (2) the program abstraction that we
use, and (3) the computation of a numerical similarity score from an edit script.

Computing the minimal edit script

Currently, our similarity assessment function treats programs as linear sequences of
symbols. Experiments with this implementation show that it is an e�cient and suc-
cessful way to compare programs for our purposes.�eoretically, a program similarity
measure based on a tree editing distance algorithm (e.g., [Zhang and Shasha, 1989])
would yield even better discrimination.
In the following we useMyers’s classical Longest Common Subsequence (LCS) al-

gorithm [Myers, 1986] to e�ciently compute the minimal edit script of two sequences
of symbols. It takes two sequences

A=a1 a2⋯aN and B=b1 b2⋯bM

as input, where the a i and b j are elements of an arbitrary alphabet, and produces the
minimal edit script for turning A into B.
An edit script is a list of insertion and deletion commands.�e delete command

“x D” deletes the symbol at position x from A.�e insert command “x I b1 b2⋯bt”
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inserts the sequence of symbols b1 b2⋯bt immediately a�er position x. �e script
commands refer to symbol positions in A a�er the preceding commands have been
executed.�e length of the script is the number of symbols inserted or deleted.

Program abstraction

�e computation of a minimal edit script requires as input two sequences of sym-
bols. To construct such sequences from the two programs that are to be compared,
we �rst linearize the programs into a sequence of statements. �en, the statements
are abstracted into statement signatures.
Statement signatures are de�ned to abstract from names, expressions, most lit-

eral values, etc.�at is, they are designed to remove all features that tend not to in-
�uence the shape of the control �ow and, thus, proof structure. Abstraction reduces
noise and increases reuse performance. As a byproduct, it allows our algorithm to deal
with such program changes as renamings and changes of literal values.�is “coars-
ening” approach has parallels to the technique of boolean program abstraction [Ball
and Rajamani, 2000], which produces an equivalent—in some sense—program with
a reduced state space. In contrast, we are only interested in a means to syntactically
discern related and unrelated programs and not in behavioral re�nement.

�e �rst element of the abstraction of a statement S is the name of S (e.g., If ,
LocalVarDecl, Assignment). In the following cases, more details are added to the ab-
straction:

• If the statement S is also an expression, the static type of the expression is added.
If, moreover, S is an assignment whose right operand is a boolean literal, then
the value of that literal is appended as well.

• If the statement S is a method invocation, the signature of the method and the
name of the class containing the referenced implementation are added.

�e boolean literal assignment has indeed to be treated in this special way. First,
the symbolic execution rules of our calculus o�en introduce two symmetrical assign-
ments of this kind when branching upon JAVA’s relational and equality expressions.
Without the special treatment, the two branches would be indistinguishable. Also,
the small domain of the boolean data type and the direct impact of the particular
value assigned on the control �ow do not permit removal of this information.

Example 10.1. Consider the following two programs α and β:

α =
⎧⎪⎪
⎨
⎪⎪⎩

int x; int res;res = x/x;
β =
⎧⎪⎪
⎨
⎪⎪⎩

int x; int res;if (x==0) res=1; else res=x/x;
�e result of abstracting them into sequences A resp. B of signatures is:
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A =
⎧⎪⎪
⎨
⎪⎪⎩

LoalVarDel, LoalVarDel,Assignment(int)
B =
⎧⎪⎪
⎨
⎪⎪⎩

LoalVarDel, LoalVarDel,If, Assignment(int),Assignment(int)
�e underlined parts correspond to the insertions in the minimal edit script. It con-
sists of the two commands 2 I If and 4 I Assignment(int). �

One could devise more elaborate abstraction schemes. Our experience, though,
shows that this only leads to a marginal improvement.

From edit script to similarity score

To compute a similarity score for two programs α and β, we have computed aminimal
edit script between their abstract representationsAand B. Nowwemust condense this
edit script into a single numerical value.

De�nition 10.2 (Program similarity score). Let E(A, B)= e1 e2⋯en be the minimal
edit script for the abstractions A, B of programs α, β.�en, the similarity score of A, B
resp. α, β is de�ned by

δ(α, β)=δ(A, B) = −

n∑
i=1

P(e i)

where the penalty P(e) for an edit command e is5

P(e) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

t∑
k=1

0.75
x + k

if e=x I b1 b2⋯bt

1
x + 1

if e=x D

We remind that x is the numeric position of the insertion/deletion as counted from
the beginning of the linearized program. �

Note that higher values of δ(α, β)mean higher similarity, and that δ(α, β) is al-
ways less than or equal to zero.�e maximal value 0 is reached for programs with
identical signatures.�e quality threshold is chosen at −0.72 for the given values of
penalty constants.

�e function δ is not symmetric, meaning that in general δ(A, B) /=δ(B,A). State-
ment insertions are penalized less than deletions.�e reason for de�ning δ in that way
is that additional statements in the new program are easier to handle for reuse than
missing statements. Deleting statements does usually not simply correspond to delet-
ing proof parts but requires more complex changes of the proof.
Program di�erences are penalised less the farther they are from the active (�rst)

statement, which is the target of symbolic execution.

5 Please note that all numbers provided here are for orientation purposes only.�e numbers
in your version of the KeY system may vary.
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Example 10.3 (Example 10.1 continued).We now consider the minimal edit script for
the programs α and β presented above. It consists of the two commands 2 I If and
4 I Assignment(int).

�e similarity score is thus:

δ(α, β)=δ(A, B) = −
0.75
2 + 1

+ −
0.75
4 + 1

=−0.4 ,

which signi�es a medium to high similarity. �e score is above the threshold and
warrants reusing the application of the local-variable-declaration rule from the old
proof in the new one. �

Similarity Score for First-order Logic Parts

Assessing the quality of possible reuse pairs that do not deal with symbolic program
execution is a more di�cult challenge.�is is due to the lower degree of local deter-
minism of the �rst-order fragment of the calculus and the high “volatility” of �rst-
order formulas in a proof.
We use two di�erent similarity criteria for �rst-order-related proof steps. First, a

high bonus (+1.0) is added to the quality score if the foci in the old and the new proof
are identical up to variable renaming. Otherwise, a small penalty (−0.2) is added. Sec-
ond, the two formulas that contain the actual rule application foci are compared in a
similar manner as programs: formulas are linearized, then the names of variables,
functions, etc. are abstracted to their sorts, and �nally a minimal edit script is com-
puted.�e script is scored uniformly, with every deletion worth a penalty of 0.1 and
every insertion a penalty of 0.05. Additionally, the programs in the formulas con-
tribute their similarity scores with a weight of 0.25.

�e results of using these criteria are su�cient for a high ratio of correctly reused
rule applications but are not as good as for rule applications with a program part in
focus.

Similarity Score for Focus-less Rules and a Re�nement Based on Proof
Connectivity

An additional feature that can be used to score possible reuse pairs (besides similar-
ity of rule foci), is the connectivity of the new proof (as compared to the old proof).
�is criterion gives a bias against tearing apart proof steps that are connected in the
old proof. Reuse pairs disrupting connectivity are assigned a small penalty (of −0.1).
�is is enough to tip the scales in case other features do not provide discrimination
between several possible reuse pairs.

10.4 Finding Reusable Subproofs

Ourmain reuse algorithm requires an initial list of reuse candidates.�ese initial can-
didates, which are rule applications in the old proof, can be seen as the points where
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the old proof is cut into subproofs that are separately reusable. �ey are the points
where reuse is re-started a�er program changes required the user or the automated
proof searchmechanism to performnew rule applications not present in the old proof.
�e choice of the right initial candidates is important for reuse performance.
Since program changes may lead to additional case distinctions in the new proof,

it may be necessary to reuse old subproofs repeatedly in the new setting. In order to
deal with this necessity, wemake the initial candidate proof steps persistent. As shown
in Figure 10.2, the initial candidates (they are the elements of C0) are not consumed
when they are reused.�us an initial candidate proof step is always available to seed
the corresponding template subproof when needed.

�e way initial candidates are computed depends on the way the program and
thus the initial proof goal has changed. For changes a�ecting single statements (local
changes) we extract the di�erences right from the source �les, using an implementa-
tion of the GNU di� utility (www.bmsi.om/java/#diff) in JAVA.�e di� utility is
based on the same algorithm byMyers [Myers, 1986] that we use for program similar-
ity scoring. GNU di� is well-known to produce meaningful change sets for modi�ca-
tions of source �les. A number of heuristics help identify common sections of code in
the old and the new program based on di� output.�e proof fragments dealing with
these common parts are good candidates for reuse; thus, their root nodes are marked
as initial reuse candidates.
In the KeY system, the di�erences between program revisions are provided by the

integrated source tracking system based on CVS, which in turn uses GNU di�. Based
on that information, markers for initial reuse candidates are automatically inserted by
our reuse facility into the proof to be reused.int x;int res;res=x/x; int x;int res;if(x==0) {res=1;} else {res=x/x;}

� old+++ new�� -1,3 +1,7 ��int x;int res;+if(x==0) {+ res=1;+}else {res=x/x;+}
(a) (b) (c)

Figure 10.4.Change detectionwithGNUdi�: (a) old program, (b) newprogram, and (c) output
of “diff -uw”
Example 10.4. �e output of GNU di� for our running example is shown in Fig-
ure 10.4.�e �rst three lines show bookkeeping information (names of the compared
�les, position of the di�erence found).�e lines a�er this starting with “+” have been

www.bmsi.com/java/#diff
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added to the old program. Lines starting with a “-” (not occurring here) have been
removed from the old program. Lines starting with a space are common to both pro-
grams.
In this example, the common program parts start with the statements int x;

and res=x/x;.�us we scan the old proof top-down and look for proof steps with
these statements in focus.�is procedure yields two initial reuse candidates for our
example.�ese are the proof steps with the bold border in Figure 10.1 (a). �

Caveats and limitations

We have to note that the heuristics used to detect initial reuse candidates are quite ac-
curate but not infallible.�eir biggest adversary is again the fact that program struc-
ture is more adequately represented as a tree than as a linear sequence of symbols,
which is the view we take.

�e detection performance can further be impaired, for example, if the program-
mer puts several statements on one line. Given that this is (a) not too common and
(b) explicitly discouraged by the o�cial JAVA CodingConventions [SunMicrosystems,
Inc., 2003], we did not provide a solution (such as an additional intra-line di�).
Also, non-local changes, such as renaming of classes or changes in the class hier-

archy, cannot be detected in ameaningful way by the standard di� algorithm; the user
has to announce these changes separately. In the meantime, techniques have been de-
veloped for computing a precise and semantics-aware di� of two JAVA programs [Api-
wattanapong et al., 2004]. Unfortunately, this work is limited to JAVA bytecode, which
complicates the work�ow in a source-based veri�cation system.

10.5 Implementation and a Short Practical Guide

To pro�t from reuse we simply have to load another instance of a problem already
present in the prover. A dialog will appear asking whether we want to reuse a previous
proof. If we say yes, the systemwill analyze the di�erences in the source code, compute
initial reuse candidates, and, if reuse is indeed possible, enable the -marked reuse
button.
Hitting the button activates the reuse process. Should reuse stop, the system will

indicate its idea of how the proof continues via a message in the status line: templateproof ontinues with ⟨rulename⟩.We can hit Alt-space to switch the view to this partic-
ular proof step. Hitting Alt-space again takes us back to the open goal in the current
proof.�is can give us some idea of where to steer the proof. Now we have to per-
form proof steps interactively or run a strategy. Once a state is reached where reuse is
possible again, the reuse button will be enabled.

�e candidate proof steps (“reuse candidates”) are always distinguished in the
template proof by a -sign at the corresponding node of the template proof tree. It is
possible to add or remove candidate markers at any time via the context menu of a
proof node. For this, the context menu o�ers the item mark for reuse, which toggles
the marked state.
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In order to provide feedback, the reuse facility can color the nodes in the proof tree
it constructs with di�erent colors.�e ecru (yellowish) nodes are the ones created by
the reuse procedure. Red nodes are the ones where the connectivity of the old proof
has been broken for some reason.

10.6 �e Example Revisited

We trace the �rst few interesting steps in detail, while slightly simplifying the presen-
tation for clarity (e.g., the connectivity feature is not considered).
First, we need to compute a set of initial reuse candidates based on the di�erences

between the old and the new version of the program (both given in the introduction).
How this is done is explained in Example 10.4, which shows that we obtain two can-
didates in our case.�ese are the nodes with a bold border in Figure 10.1 (a).
For now, we only consider the �rst one, namely the rule for variable declarations

applied to “int x;” in the old proof (the rule of the second initial candidate concern-
ing “res=x/x;” is not applicable anyway). It has one possible focus in the following
(new) initial proof goal (it cannot be applied to the second variable declaration, since
our calculus always treats the le�-most statement �rst):

Ô⇒⟨int x; int res;if (x==0) res=1; else res=x/x;⟩ (res= 1) (G0)

�e similarity score for the single possible reuse pair (see Example 10.1 for the com-
putation) is −0.4, and reuse is performed. We get the new goal

Ô⇒⟨int res;if (x==0) res=1; else res=x/x;⟩ (res= 1) (G1)

and a new reuse candidate (the child of the initial candidate in the old proof), which
is again an application of the rule for variable declarations, this time applied to
“int res;”. It also has one possible focus in the new proof in goal (G1).�e similar-
ity score for the resulting possible reuse pair is −0.62.�is is less than before as there
are now fewer identical parts in the programs of the old and the new focus, and the
�rst di�erence is closer to the active statement. Nevertheless, reuse is still indicated.
�e resulting new goal sequent is

Ô⇒⟨if (x==0) res=1; else res=x/x;⟩ (res= 1) (G2)

and the new candidate is the rule handling the assignment “res=x/x;” in the old
proof (which happens to be identical to the second initial candidate). �is candi-
date, however, is not applicable in (G2). We have reached a genuinely new part of
the amended program and, thus, of the proof.
To deal with the new programparts, where no reuse is possible, wemanually apply

the rules for handling the if statement and evaluating its condition (in practice this
can be done automatically).�e proof tree splits, and we get two subgoals:



10.6 �e Example Revisited 149

Ô⇒x=0Ð→⟨res=1;⟩ (res= 1) (G2.1)

Ô⇒¬(x=0)Ð→⟨res=x/x;⟩ (res= 1) (G2.2)

�ere are still two identical candidate proof steps with the rule tackling “res=x/x;”.
�is rule cannot be applied to (G2.1), as handling an assignment with a literal instead
of a division on the right requires a di�erent rule. But the candidate can, of course, be
applied to (G2.2).�e similarity score for this possible reuse pair is 0.0.�e candidate
is reused, and (G2.2) is replaced by two new subgoals:

Ô⇒¬(x=0)Ð→
¬(x=0)Ð→(res=div(x, x)Ð→⟨⟩ (res= 1)) (G2.2.1)

Ô⇒¬(x=0)Ð→x=0Ð→⟨throw new ArithmetiExeption();⟩ (res= 1) (G2.2.2)

We now have three open goals: (G2.1) is on the “new” branch, (G2.2.1) is on the “nor-
mal execution” branch, and (G2.2.2) is on the “division by zero” branch.�ings get a
bit complicated now as we also obtain two new reuse candidates. Both are applications
of the same rule, namely the �rst-order logic rule for handling implications; their foci
are:

¬(x=0)Ð→ ({res=div(x, x)} ⟨⟩ (res = 1)) (C-N)x=0Ð→ ⟨throw new ArithmetiExeption();⟩ (res= 1) (C-Z)

Each of these two candidates has a possible focus in all three open goals. �us we
obtain six possible reuse pairs, of which in fact only two are appropriate—(C-N) must
be reused at (G2.2.1) and (C-Z) at (G2.2.2), not the other way round. We also do not
want to waste any of these two candidates on the branch (G2.1), which was not present
in the template. �e reuse facility computes the following quality scores for the six
pairs:

(C-N) (C-Z)

(G2.1) −0.53 −0.81

(G2.2.1) −0.35 −0.77

(G2.2.2) −0.58 −0.35

As desired, the two right possibilities (shown in bold) have the highest similarity
scores and are selected for application. Subsequently the candidate markers move on,
and the other 4 possible reuse pairs become obsolete.
From here on, reuse can be continued to the successful completion of the proof. If

we immediately close the branch under (G2.2.2), which is obviously futile in the new
situation, the new proof consists of 45 proof steps, of which 27 have been reused.6

�is is the optimal reuse performance for the given correction. More important than
the numbers, though, is the fact that all una�ected parts of the old proofs could be
reused completely. For a complicated program, these parts would normally contain
non-trivial user interactions (quanti�er instantiations, use of lemmas, etc.). Saving
these is the main bene�t of reuse.
6 �e numbers can vary with the version of the KeY system.
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10.7 Other Systems and RelatedMethods

In this section we give a short survey and comparison of proof reuse-related methods
as employed by a number of di�erent veri�cation systems.

Global abstraction methods

An alternative to incremental reuse presented here is global proof abstraction. �is
broad group of methods attempts to capture the overall gist of whole proofs—at
once—and instantiate it for a new problem. Examples are Kolbe and Walther’s tech-
nique for proving conjectures by induction [Kolbe andWalther, 1994] and the e�orts
of the Omega Project [Melis andWhittle, 1999]. To our knowledge, this approach has
not been successfully applied to veri�cation of object-oriented so�ware.�is might
be attributed to the fact that the relevant changes in this domain are of local nature.

Constructive methods

Another non-incremental technique for reusing proofs is constructive reuse.�e con-
structive approach is to analyze the changes made to the proof goal (i.e., the program
to be veri�ed) and their e�ects, and to use this information to identify and reassem-
ble parts of the template proof into a new one.�is approach, however, needs to have
exact knowledge of all calculus rules and e�ects of program changes (“when an if-
statement is inserted, an application of the if-rule must be added to the proof and,
below that, the proof branches. . . ”).�us, constructive methods are infeasible for cal-
culi with complex target programming languages (e.g., JAVA) and a large number of
rules.

�e so�ware veri�cation system KIV [Balser et al., 2000a], for example, contains
a constructive proof reuse facility [Reif and Stenzel, 1993]. It works well as the pro-
grams that are veri�ed with KIV are written in a simple Pascal-like language, and the
KIV calculus has only a comparatively small number of program logic rules.

Replay methods

�e simplest incremental reuse method is to just replay the (old) proof script.�is
works well as long as the information in which the new proof must di�er from the old
proof is not contained in the (linear) script but can be inferred during rule application.
An example for such types of information are the instantiations of schema variables,
which are computed by a matching algorithm. Signi�cant changes in proof structure,
however, cannot be handled by a simple replay mechanism.
A typical example for this kind of reuse is the replay mechanism of the Isabelle

theorem prover [Nipkow et al., 2002]. It is quite powerful as its proof scripts (usually)
contain neither variable instantiations nor the foci of rule applications (which are in-
ferred during rule/tactic application according to simple rules). On the other hand,
it cannot automatically cope with changes in proof goal ordering or automatically re-
sume reuse a�er an intermittent failure.
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Similarity guided methods

Melis and Schairer pursue another variation of replay [Melis and Schairer, 1998]; this
time speci�cally for reuse of subproofs in the veri�cation of invariants of reactive sys-
tems, which are speci�ed using �rst-order logic. Due to symmetries and redundancies
in the state space, such proofs give rise to many similar subproofs.
Melis and Schairer’s approach identi�es a suitable previously solved subprob-

lem via a similarity measure on �rst-order formulas and replays the stored subproof
straight on.

�ismethod is related to our work as it operates under the assumption that similar
situations (proof goals) warrant similar actions (rule applications or subproofs).�e
similarity assessment though is performed only once, which is justi�able by a simpler
setting.

10.8 Reuse in the Veri�cation Cycle

In this section we discuss how proof reuse ful�lls a need that goes beyond the basic
scenario that we have presented so far.

10.8.1 �e Case of a Changed Class Hierarchy

Fixing a bug is the most obvious but not the only reason for re-doing proofs. Un-
fortunately, every addition or removal of a class in a JAVA program potentially invali-
dates all proofs about this program.�e problem is that, for two program-related rule
schemata of our calculus the particular rule instance depends on the set of classes
constituting the program. Using an old instance in the new context may be unsound.
�e rules in question are:

• themethod call rule, which creates an if-cascade simulating dynamic binding and
ranging over all possible implementations of a method

• the typeAbstract rule, which implies that a domain element belonging to some
abstract type, already belongs to some more speci�c non-abstract type:

typeAbstract
t <− A, t <− B1 ∨⋯∨ t <− BkÔ⇒

t <− AÔ⇒

with A∈Ta and B1 , . . . , Bk the direct subtypes of A

.

�e problem lies here with the JAVA language, and while this situation can be al-
leviated, it cannot be completely eliminated in a veri�cation tool. In some cases, e�-
cient criteria can establish that the validity of a particular proof is/is not a�ected by
a particular change of the class hierarchy.7 For example, an instance of the method
call rule remains valid if the added class does not override the method in question.

7 See, for instance, [Roth, 2006] for a detailed discussion.
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Nonetheless, the lack of a su�ciently strong module system in JAVA [Corwin et al.,
2003] impedes modular veri�cation and makes every change of the class hierarchy
more costly than one would desire.
In general, such changes demand a re-doing of proofs, most of which will stay to

a great extent the same. Here reuse can help.

10.8.2 �e Case of a Changed Speci�cation

A problem that is a symmetrical variation of the main reuse scenario presented so far
is a case of a revised speci�cation. Given a (partial) proof for ⟨p⟩ϕ we are trying to
construct a proof for ⟨p⟩ϕ′, where ϕ′ is a (slightly) revised version of ϕ. While this
case occurs probably just as o�en as a change of the program, the outlook for reuse is
not as optimistic.
Usually, the speci�cation is provided in a high-level language like OCL or JML,

which is then translated into Dynamic Logic. A small change of the speci�cation
is more likely to produce a signi�cantly di�erent proof obligation. Furthermore, the
choice of reuse candidates in the template proof is far from obvious (apart from the
root node).
Altogether, it is hardly possible to give a performance prediction, but the proce-

dure might still be helpful in a given case.

10.8.3 �e Case of Interactive Proof Search

Complicated proofs almost always require user interaction. Even worse, the quality
of the choice required from the user o�en becomes apparent only much later in the
proof. For instance, many proof steps a�er choosing an induction hypothesis one reg-
ularly �nds out that it has to be amended for the proof to be successful. In many cases
the required change is actually quite simple, like adding a premiss.
In theory, this is not a problem, since the KeY calculus is con�uent. Con�uence

means that there are no dead ends or blind alleys: it is always possible to extend any
partial proof to completion if a proof exists at all. In practice this is a small consolation,
since the remnants of the old proof attempt clutter the sequents making it impossible
to concentrate on the new one.

�is way, we are usually stuck with the only choice of performing undo all the
way back to the regrettable decision and re-constructing the rest of the proof. Now, it
would be tempting to have the ability to edit the proof tree “in place”, but this would
require some very elaborate presentation. With proof reuse we obtain an alternative
solution to the problem.
Here’s how it works in practice. If we think that a proof step needs revision, we

select this step (node) in the proof tree. From the context menu we select hange thisnode. A clone of the current problem instance will be created, with reuse active. Ac-
tivating reuse will re-enact the existing proof up to the step we wish to change.�en
reuse will stop, and we have the possibility to revise our choice at this point. A�er
that, it is possible (if the new situation allows) to reuse the rest of the old attempt in
the new setting.



10.8 Reuse in the Veri�cation Cycle 153

10.8.4 �e Case of Redundant Subproblems

Sometimes a veri�cation problemgives rise to several similar subproblems.�esemay
be symmetrical in some sense, or maybe even identical. Having solved one of them it
is possible to employ the reuse mechanism to solve the others.
In practice, we identify the root node of the desired template subproof and mark

it as a reuse candidate using the contextual menu of the proof tree.�e reuse facility
then automatically identi�es an open goal where this solution may be applicable and
attempts to adapt it to the new target in the usual fashion.

10.8.5 �e Case of Using Customizable Calculus Modules

Another opportunity for proof reuse arises when using customizable calculus mod-
ules.�ere are several areas of the KeY calculus where the calculus designers provide
alternative sets of rules for the user to choose from. �ese rule sets have di�erent
properties and are tailored towards di�erent veri�cation tasks and scenarios.�e ar-
eas covered by such customizable modules include: null dereferencing checks (on or
o�), treatment of static initialization (on or o�), integer semantics (three di�erent
ones) and others.�e user of the KeY system can mix and match the rule sets for each
veri�cation problem.
Usually, in order to reduce complexity, it is recommended to verify a programwith

a “simple” calculus version �rst and then incrementally add assurance by repeating
the proof with a more involved calculus setting. In this proof reuse is a real help. We
illustrate this using veri�cation of integer manipulation in programs.�e approach
of choice here is to verify a program using the mathematical integer semantics, and
a�erwards repeat the proof with the so-called RKeY-semantics.

�e rules of RKeY-semantics di�er from the mathematical rules by an additional
premiss, which is boxed in the following example of an addition rule:

assignmentAdditionToUpdateCheckingOF

RangeT(se1), RangeT(se2)Ô⇒RangeT(se1 + se2)
Ô⇒{var ∶= se1 + se2}⟨π ω⟩ϕ
Ô⇒⟨π var=se1+se2; ω⟩ϕ

�is means that the RKeY -proof has an additional branch for every arithmetical oper-
ation considered during the proof.
Once we are satis�ed with a proof that uses mathematical integers, we change the

integer semantics to the RKeY-based one and reload the problem.�e reuse facility
creates a single reuse candidate at the root of the template proof. Activating reuse pro-
duces a copy of the template with the additional open branches mentioned above. Dis-
charging these branches yields a proof that the program is functionally correct w.r.t.
the �nite range of JAVA integers. Note that we did not have to engineer any knowledge
about the particular structure of the rules or the ordering of the premisses.

�e above scenario can also be seen as a benign instance of a more general—and
still open—problem, which we discuss in the following section.
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10.8.6 �e Case of a Changed Proof System

A fact seldomly acknowledged by veri�cation solution providers is that a signi�cant
part of the veri�cation cost is due to changes in the veri�cation system itself. If proofs
are used as certi�cates for program correctness, they o�en have to bemaintained over
a longer period of time, possibly over many years. For most purposes, it is essential
that proofs can be loaded, checked, and manipulated within the veri�cation system
during their lifetime. On the other hand, modi�cations to the proof system itself are
to be expected in the meantime.

�ese modi�cations are quite frequent and can force users to redo proofs, mostly
for two reasons.�e �rst reason is that a critical bug has been �xed in the system and
the correctness assertions—while mostly still valid—have to be re-proved with the
�xed version.�e second reason is that the improved performance and usability of
the new version warrants an upgrade. But, of course, every upgrade also has a down-
side. Old proofs stored on persistent media may have become obsolete and require
signi�cant e�ort to salvage their content.�is is a problem for all veri�cation systems
that store proofs.
During the years of the development of the KeY system we have encountered nu-

merous changes in the following areas:

1. logic syntax
2. parser/disambiguation
3. formalization of the JAVA language semantics
4. logical structure of the rules
5. rule execution engine

We brie�y discuss the important change classes (3) and (4). Together with Bormer
[2007] we have extended the reuse facility to automate translation of proofs between
versions of the proof system a�ected by these changes. �e translation mechanism
can load a “legacy” proof with the old rule base and simultaneously an identical proof
obligation with the new rule base.�e system calculates reuse markers from the di�
between rule bases.�e reuse process then supports e�cient porting of the old proof
to the new rule base.
Case (3) arises when minor errors in the symbolic execution rules of the KeY cal-

culus have to be �xed.�is happens infrequently, but cannot be ruled out, since one
can never arrive from an informal speci�cation at a formal one by formal means.8

�e KeY project on regular bases performs the only measure suitable to mitigate this:
cross-checking our rules with other formalizations of JAVA. A recent check of this
kind [Trentelman, 2005] has discovered a missing case in our array assignment rule.
�e erroneous rule and its correction are presented in Figure 10.5. As one can see, the
changes are minor and of local nature, lending themselves nicely to similarity-guided
proof reuse.

�e case (4) is usually not concerned with soundness, but with e�ciency. At one
point some rules containing a potential case distinction have been reformulated from

8 For an in-depth discussion of the calculus soundness issue please see Chapter 9.
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a=nullÔ⇒⟨π throw new NPE(); ω⟩ϕ
a /=null ∧ (i<0 ∨ i≥a.length)Ô⇒⟨π throw new AOBE(); ω⟩ϕ

a /=null ∧ i≥0 ∧ i<a.lengthÔ⇒{a[i] ∶=val}⟨π ω⟩ϕ
Ô⇒⟨π a[i℄=val ω⟩ϕ

a=nullÔ⇒⟨π throw new NPE(); ω⟩ϕ
a /=null ∧ (i<0 ∨ i≥a.length)Ô⇒⟨π throw new AOBE(); ω⟩ϕ

a /=null ∧ i≥0 ∧ i<a.length ∧ ¬storable(val , a)Ô⇒⟨π throw new ASE(); ω⟩ϕ
a /=null ∧ i≥0 ∧ i<a.length∧storable(val , a)Ô⇒{a[i] ∶=val}⟨π ω⟩ϕ

Ô⇒⟨π a[i℄=val ω⟩ϕ

Abbreviations: NPE=NullPointerExeptionAOBE=ArrayIndexOutOfBoundsExeptionASE=ArrayStoreExeption
Figure 10.5. A rule for array assignment: initial and revised version (di�erences are boxed)

the form splitting the proof (e.g. ifElseSplit) to a form employing a conditional for-
mula (rule ifElse, both rules are given in Section 2.7.2), which has the advantage that
one has to reason about the condition only once. Also in this case, proof reuse can
enable a smoother transition to the upgraded calculus.

10.9 Conclusion

Practitioners o�en report that the cost of re-veri�cation is a serious bottleneck in real
world formal methods applications [Denney and Fischer, 2005].We have presented a
proof reuse method that works surprisingly well for a broad range of deductive pro-
gram veri�cation tasks.�emethod is very �exible and requires nomodi�cation even
as the calculus is constantly evolving. Also, no knowledge has to be built into the
method concerning the e�ects that a certain program change has on the structure of
the correctness proof.

�emain reasonwhy themethodworks is that programs are exceedingly informa-
tion-rich artifacts, and the KeY calculus preserves this richness with a highly locally
deterministic design. First, symbolic execution rules only apply at the foremost, or
active, statement of the program, and, second, there is no rule for sequential com-
position, so active statements do not “multiply”.�is way, there are usually only few
possible foci for a particular rule to extend a given partial proof.
We have shown that proof reuse has many applications in the veri�cation process

beyond the simple scenario presented at �rst. We have also discussed the biggest re-
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maining challenge: the case when the speci�cation of a system is modi�ed. We have
given instructions on using the reuse implementation within the KeY prover.

We are thankful to Bernd Fischer and Dieter Hutter for very helpful comments on an earlier
version of this text.
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