Noname manuscript No.
(will be inserted by the editor)

Relational Program Reasoning Using Compiler IR

Combining Static Verification and Dynamic Analysis

Moritz Kiefer - Vladimir Klebanov -
Mattias Ulbrich

the date of receipt and acceptance should be inserted later

Abstract Relational program reasoning is concerned with formally compar-
ing pairs of executions of programs. Prominent examples of relational reasoning
are program equivalence checking (which considers executions from different pro-
grams) and detecting illicit information flow (which considers two executions of
the same program).

The abstract logical foundations of relational reasoning are, by now, sufficiently
well understood. In this paper, we address some of the challenges that remain
to make the reasoning practicable. Two major ones are dealing with the feature
richness of programming languages such as C and with the weakly structured
control flow that many real-world programs exhibit.

A popular approach to control this complexity is to define the analyses on
the level of an intermediate program representation (IR) such as one generated by
modern compilers. In this paper we describe the ideas and insights behind IR-based
relational verification. We present a program equivalence checker for C programs
that operates on LLVM IR. To extend the reach of the approach and to make it
more efficient, we show how dynamic analyses can be employed to support and
strengthen the static verification.

The effectiveness of the approach is demonstrated by automatically verifying
equivalence of functions from different implementations of the standard C library.

1 Introduction

Relational program reasoning. Over the last years, there has been a growing
interest in relational verification of programs, which reasons about the relation be-
tween the behavior of two programs or program executions — instead of comparing
a single program or program execution to a more abstract specification. The main
advantage of relational verification over standard functional verification is that

Karlsruhe Institute of Technology
Germany

E-mail: moritz.kiefer@student.kit.edu
E-mail: {klebanov, ulbrich}@kit.edu

2 Moritz Kiefer et al.

there is no need to write and maintain complex specifications. Furthermore, one
can exploit the fact that changes are often local and only affect a small portion of a
program. The effort for relational verification often only depends on the difference
between the programs respectively program executions and not on the overall size
and complexity of the program(s).

Relational verification can be used for various purposes. An example is re-
gression verification resp. equivalence checking, where the behavior of two different
versions of a program is compared under identical input. Another example is check-
ing for absence of illicit information flow, a security property, in which executions
of the same program are compared for different inputs. For concreteness’ sake, we
focus in this paper on regression verification/equivalence checking of C programs,
though the presented techniques readily apply to other instances of relational rea-
soning.

Regression verification. Regression verification is a formal verification approach
intended to complement regression testing. The goal is to establish a formal proof
of equivalence of two program versions (e.g., consecutive revisions during program
evolution, or a program and a re-implementation). In its basic form, we are trying
to prove that the two versions produce the same output for all inputs. In more
sophisticated scenarios, we want to verify that the two versions are equivalent
only on some inputs (conditional equivalence) or differ in a formally specified way
(relational equivalence). Regression verification is not intended to replace testing,
but when it is successful, it offers guaranteed coverage without requiring additional
expenses to develop and maintain a test suite.

Challenges in making regression verification practicable. The abstract logical
foundations of relational reasoning are, by now, sufficiently well understood. For
instance, in [13], we presented a method for regression verification that reduces
the equivalence of two related C programs to Horn constraints over uninterpreted
predicates. The reduction is automatic, just as the solvers (e.g., Z3 [20,24] or
ELDARICA [32]) used to solve the constraints. Our current work follows the same
principles.

Yet, the calculus in [13] only defined rules for the basic, well-structured pro-
gramming language constructs: assignment, if statement, while loop and function
call. The REVE tool implemented the calculus together with a simple self-developed
program parser.

While the tool could automatically prove equivalence of many intricate arith-
metic-intensive programs, its limited programming language coverage hampered its
practical application. The underlying calculus could not deal with break, continue,
or return statements in a loop body, loop conditions with side effects, for or do-
while loops, let alone arbitrary goto statements.

Incorporating dynamic analyses Horn constraint solvers are a powerful tech-
nique to infer the predicates required in our approach. However, there are limits
to their capabilities:

1. If the programs are not related enough, i.e., if there control-flow structures are
too different, the required predicates are more involved and more difficult to
infer.

Relational Program Reasoning Using Compiler IR 3

2. They are limited to certain shapes of coupling predicates (essentially first order
formulas over linear arithmetic)

To support Horn constraint solvers in their task, we have devised two techniques
that make the resulting sets of Horn constraints easier to verify. The techniques
exploit that we still have the original programs which can be evaluated/executed.
They analyze dynamic data gathered during repeated execution of the programs.
We thus combine dynamic and static analyses as the latter incorporates insight
gained in the first.

Contributions. The main contribution of this paper is a method for automated
relational program reasoning that is significantly more practical than [13] or other
state-of-the-art approaches. In particular, the method supports programs with
arbitrary unstructured control flow without losing automation. The gained versa-
tility is due to a completely redesigned reduction calculus together with the use of
the LLVM compiler framework [22] and its intermediate program representation
(IR).

Furthermore, the calculus we present in this paper is fine-tuned for the inference
of relational predicates and deviates from plain straightforward encodings in crucial
points: (a) Loops are not always reduced to tail recursion (see Sect. 4.6), (b) mutual
function summaries are separated into two predicates for pre- and postcondition
(see Sect. 4.5), and (c) control flow synchronization points can be placed by the
user manually to enable more flexible synchronization schemes.

In addition to the logical encoding, we present techniques that exploit dynamic
data gathered from traces of recorded program executions. The information is used
(a) to find program transformations which harmonize the loop structure between
the compared programs, and (b) to efficiently infer loop invariant candidates.

We developed a tool implementing the approach, which can be tested online at
http://formal.iti.kit.edu/improve/reve/. We have evaluated the tool by auto-
matically proving equivalence of a number of string-manipulating functions from
different implementations of the C standard library.

Main idea of our method. First, we employ the LLVM compiler framework to
compile the C source code to LLVM IR. This step reduces all control flow in a
program to branches (jumps) and function calls. Next, we divide the (potentially
cyclic) control flow graph of the program into linear segments. For the points at
which these segments are connected, we introduce relational abstractions repre-
sented by uninterpreted predicate symbols (instead of concrete formulas). The
same applies for pairs of corresponding function calls. Finally, we generate con-
straints over these predicate symbols linking the linear segments with the corre-
sponding state abstractions. The produced constraints are in Horn normal form.

The generation of constraints is automatic; the user does not have to supply
coupling predicates, loop invariants, or function summaries. The constraints are
passed to a constraint solver for Horn clauses (such as Z3 [20,24] or ELDARICA [32]).
The solver tries to find an instantiation of the uninterpreted abstraction predicates
that would make the constraints true. If the solver succeeds in finding a solution,
the programs are equivalent. Alternatively, the solver may show that no solution
exists (i.e., disprove equivalence) or time out.

4 Moritz Kiefer et al.

Listing 1: memchr(), dietlibc Listing 2: memchr(), OpenBSD libc
1 #include <stddef.h> 1 #include <stddef.h>
2 2
3 void* memchr(const void *s, 3 void * memchr(const void *s,
4 int c, 4 int c,
5 size_t n) { 5 size_t n) {
6 const unsigned char *pc = 6 if (n '= 0) {
7 (unsigned char *) s; 7 const unsigned char *p = s;
8 for (;n--;pc++) { 8 do {
9 __mark(42); 9 __mark(42);
10 if (*pc == c) 10 if (*p++ == (unsigned char)c)
11 return ((void *) pc); 11 return ((void *)(p - 1));
12 } 12 } while (--n != 0);
13 return 0; 13 }
14 } 14 return (NULL);

15}

Advantages of using LLVM IR. There are several advantages to working on
LLVM IR instead of on the source code level. The translation to LLVM IR takes
care of preprocessing (resolving typedefs, expanding macros, etc.) and also elim-
inates many ambiguities in the C language such as the size of types (which is
important when reasoning about pointers). Building an analysis for IR programs
is much simpler as the IR language has fewer instruction types and only two control
flow constructs, namely branches (jumps) and function calls. Furthermore, LLVM
provides a constantly growing number of simplifying and canonicalizing transfor-
mations (passes) on the IR level. If the differences in the two programs are merely
of a syntactical nature, these simplifications can often eliminate them completely.
Also, it was easy to incorporate our own passes specifically geared towards our use
case.

Challenges still remaining. Of course, using a compiler IR does not solve all
challenges. Some of them, such as handling integers overflows correctly, more ef-
ficient heap data structure encodings, or dealing with general bit operations or
floating-point arithmetic remain due to the limitations of the underlying solvers.

2 Illustration

We tested our approach on examples from the C standard library (or libc). The
interfaces and semantics of the library functions are defined in the language stan-
dard, while several implementations exist. GNU libc [15] and OpenBSD libc [29]
are two mature implementations of the library. The diet libc (or dietlibc) [23] is
an implementation that is optimized for small size of the resulting binaries.
Consider the two implementations of the memchr () function shown in List-
ings 1 and 2. The function scans the initial n bytes of the memory area pointed to
by s for the first instance of c. Both ¢ and the bytes of the memory area pointed
to by s are interpreted as unsigned char. The function returns a pointer to the
matching byte or NULL if the character does not occur in the given memory area.
In contrast to full functional verification, we are not asking whether each imple-
mentation conforms with this (yet to be formalized) specification. Instead, we are
interested to find out whether the two implementations behave the same. Whether

Relational Program Reasoning Using Compiler IR 5

or not this is the case, is not immediately obvious due to the terse programming
style, subtle pointer manipulation, and the different control flow constructs used.

While the dietlibc implementation on the left is relatively straightforward, the
OpenBSD one on the right is more involved. The for loop on the left is replaced by a
do-while loop wrapped in an if conditional on the right. This transformation known
as loop inversion reduces the overall number of jumps by two (both in the branch
where the loop is executed). The reduction increases performance by eliminating
CPU pipeline stalls associated with jumps. The price of the transformation is the
duplicate condition check increasing the size of the code. On the other hand, loop
inversion makes further optimizations possible, such as eliminating the if statement
if the value of the guard is known at compile time.

The code shown here is the original source code and can indeed be fed like that
into our implementation LLREVE, which without further user interaction estab-
lishes the equivalence of the two implementations. For demonstration purposes, we
have added invocations of the synthetic function __mark() into the loop bodies.
These calls identify synchronization points in the execution of the two programs
where their states are most similar. The numerical arguments to __mark serve to
identify matching pairs of points. Synchronization points must be added such that
all cycles in the control flow are broken, otherwise the tool will abort with an er-
ror message. In cases where the control flow structure between the two compared
programs is similar enough (like in the example), the engine is able to infer the
marks automatically. If the loop synchronization is not obvious, the user is able
to manually annotate coupling synchronization like done in the example.

Suppose that we are running the two implementations to look for the same
character ¢ in the same 100 byte chunk of memory. If we examine the values of
variables at points in time when control flow reaches the __mark (42) calls for the
first time, we obtain: for dietlibc n = 99, pc = s, and for OpenBSD n = 100, p = s.
The second time: for dietlibc n = 98, pc = s+1, and for OpenBSD n = 99,p = s+1.
The values of ¢, s, and the whole heap remain the same. At this point, one could
suspect that the following formula is an invariant relating the executions of the
two implementations at the above-mentioned points:*

(nz2 =mn1 + 1) A (py = pey) A (C2 = ¢1) AVi. heap, [i] = heap,|i] . (%)

That our suspicion is correct can be established by a simple inductive argument.
Once we have done that, we can immediately derive that both programs produce
the same return value upon termination.

We call an invariant like (%) for two loops a coupling (loop) invariant. A similar
construct relating two function calls is called a mutual (function) summary (e.g., by
Hawblitzel et al. [18,19]). Together, they fall into the class of coupling predicates,
inductive assertions allowing us to deduce the desired relation upon program ter-
mination. In [13], we have shown that coupling predicates witnessing equivalence
of programs with while loops can be often automatically inferred by methods such
as counterexample-guided abstraction refinement or property-directed reachability.
In this paper, we present a method for doing this for programs with unstructured
control flow.

1 To distinguish identifiers from the two programs, we add subscripts indicating the program
to which they belong. We may also concurrently use the original identifiers without a subscript
as long as the relation is clear from the context.

6 Moritz Kiefer et al.

3 Related Work

Our own previous work on relational verification of C programs [13] has already
been discussed in the introduction.

Many code analysis and formal verification tools operate on LLVM IR, though
none of them, to our knowledge, perform relational reasoning. Examples of non-
relational verification tools building on LLVM IR are LLBMC [25] and SeaHorn [17].
The SeaHorn tool is related to our efforts in particular, since it processes safety
properties of LLVM IR programs into Horn clauses over integers. An interesting
recent development is the SMACK [31] framework for rapid prototyping of ver-
ifiers, a translator from the LLVM IR into the Boogie intermediate verification
language (IVL) [3].

The term regression verification for equivalence checking of similar programs
was coined by Godlin and Strichman [16]. In their approach, matching recursive
calls are abstracted by the same uninterpreted function. The equivalence of func-
tions (that no longer contain recursion) is then checked by the CBMC model
checker. The technique is implemented in the RVT tool and supports a subset of
ANSI C.

Parallel to us, De Angelis et al. [9] developed another relational verification
process based on Horn constraints. This work assumes that the two programs
have been translated into constrained Horn clauses separately. The two Horn
constraints—rather than control flow graphs as in LLREVE—are combined into
a single Horn constraint that encodes the desired relational property.

Verdoolaege et al. [40,39] have developed an automatic approach to prove
equivalence of static affine programs. The approach focuses on programs with
array-manipulating for loops and can automatically deal with complex loop trans-
formations such as loop interchange, reversal, skewing, tiling, and others. It is
implemented in the 1A tool for the static affine subset of ANSI C.

Mutual function summaries have been prominently put forth by Hawblitzel et
al. in [18] and later developed in [19]. The concept is implemented in the equiva-
lence checker SYMDIFF [21], where the user supplies the mutual summary. Loops
are encoded as recursion. The tool uses Boogie as the intermediate language, and
the verification conditions are discharged by the BooGIE tool. A frontend for C
programs is available.

The BCVERIFIER tool for proving backwards compatibility of Java class li-
braries by Welsch and Poetzsch-Heffter [41] has a similar pragmatics as SYMDIFF.
The tool prominently features a language for defining synchronization points.

Balliu et al. [1] present a relational calculus and reasoning toolchain targeting
information flow properties of unstructured machine code. Coupling loop invariants
are supplied by the user.

Barthe et al. [4] present a calculus for reasoning about relations between pro-
grams that is based on pure program transformation. The calculus offers rules to
merge two programs into a single product program. The merging process is guided
by the user and facilitates proving relational properties with the help of any ex-
isting safety verification tool. In a later extension [5], they present a framework
for asymmetric relational problems (in which traces may be universally or exis-
tentially quantified). Their implementation on top of Frama-C can also deal with
more complex unwinding schemes like loop tiling.

Relational Program Reasoning Using Compiler IR 7

Beringer [6] defines a technique for deriving soundness arguments for relational
program calculi from arguments for non-relational ones. In particular, one of the
presented relational calculi contains a loop rule similar to ours. The rule targets
so-called dissonant loops, i.e., loops not proceeding in lockstep. Banerjee and Nau-
mann [2] present a theoretical logical foundation for modeling relational problems
with framing based on region logic. They liberalize coupling conditions even more
than presented here by allowing user-specified semantic predicates (called align-
ment guards) which control the synchronization between the programs. It is not
clear how alignment guards could be inferred automatically in our approach.

Ulbrich [38] introduces a framework and implementation for relational verifi-
cation on an unstructured intermediate verification language (similar to Boogie).
It also supports asymmetric relational verification and is mainly targeted at con-
ducting refinement proofs. Synchronization points are defined and used similar to
this work. However, the approach is limited to fully synchronized programs and
requires user-provided coupling predicates.

Dynamic analyses have already been used for loop invariant discovery. The
DAIKON tool [11] uses user-specified patterns to identify invariant candidates for
Java programs. The dynamic invariant generator DIG [28] infers from dynami-
cally gathered data, amongst other kinds of invariants, algebraic equations as loop
invariants. These approaches are similar to our techniques outlined in Sect. 5. How-
ever, these approaches have used dynamic analyses for the inference of functional
rather than for relational loop invariant candidates. Since for relational verification
(and for regression verification in particular) invariants can be expected to follow
typical (application-independent) patterns, we are confident that pattern-driven
invariant inference is as least as promising for relational as for functional cases.

Extending dynamic analyses by creating a counterexample driven refinement
loops has been explored previously both for polynomial invariants [34] and as
a general framework independent of the dynamic analyses and combined with a
random search [33].

The use of program transformations to reduce differences between programs has
been explored previously by Smith and Dill [35]. However, these transformations
focus on bounded control flow and rewrite a small sequence of instructions while
we focus on transforming unbounded loops. Barthe et al. [4] and Banerjee et al. [2]
provide rule-based schemes for user-guided program weaving. Our approach strives
to avoid user interaction such thatwe did not adapt these interactive strategies.

While we assume fixed coupling points and then harmonize differences by ap-
plying program transformations discovered using dynamic analyses, Partush and
Yahav [30] explores a dynamic inference of coupling points by the use of abstract
interpretation. Specifically the approach tries to find points at which the difference
between the programs is minimal.

Translation validationverifies that programs produced by an optimizing compiler
are semantically equivalent to the input programs. While this problem also requires
proving programs equivalent, existing approaches for translation validation typi-
cally try to exploit the fact that program differences were produced by compiler
optimizations and thus have a specific form. In particular, most approaches target
intra-procedural optimizations [43,42,36,27]. Some approaches also require that
branch instructions in the input and the optimized program correspond to each
other [43,42,27] and can thus only verify equivalence if there are no significant
structural differences. The work by Zaks and Pnueli [43,42] and the work by Nec-

8 Moritz Kiefer et al.

ula [27] both use relational invariants to deal with unbounded control flow but their
invariants are limited to equalities. Fquality saturation is a different technique used
by Stepp et al. [36] for translation validation of LLVM programs. Equality satu-
ration iteratively infers equalities based on built-in axioms until it can prove that
both programs are in the same equivalence class. However, some of these axioms
are specific to the optimizations found in LLVM so it is unclear if a set of ax-
ioms can be found that are suitable for verifying program equivalence in general.
Tristan et al. [37] also target LLVM but their approach proceeds by creating a
combined value graph of both programs based on their gated SSA representations.
This value graph is then successively normalized based on a set of built-in rules
until either no further normalization is possible. While this approach works well
for some optimizations, the authors have not implemented it for other optimiza-
tions such as instcombine due to the large number of rules required. This suggests
that finding a general set of rules that are suitable for verifying the equivalence of
two programs is challenging.

4 The Method
4.1 From Source Code to LLVM IR

LLVM’s intermediate representation is an abstract, RISC-like assembler language
for a register machine with an unbounded number of registers. A program in
LLVM-IR consists of type definitions, global variable declarations, and the program
itself, which is represented as a set of functions, each consisting of a graph of basic
blocks. Each basic block in turn is a list of instructions with acyclic control flow
and a single exit point.

The branch instructions between basic blocks induce a graph on the basic
blocks, called the control flow graph (CFQG), in which edges are annotated with
the condition under which the transition between the two basic blocks is taken.
Programs in LLVM IR are in static single assignment (SSA) form, i.e., each (scalar)
variable is assigned exactly once in the static program. Assignments to scalar
variables can thus be treated as logical equivalences.

To obtain LLVM IR programs from C source code, we first compile the two pro-
grams separately using the Clang compiler. Next, we apply a number of standard
and custom-built transformation passes that:

— eliminate load and store instructions (generated by LLVM) for stack-allocated
variables in favor of register operations. While we do support the general load
and store instructions, they increase deduction complexity.

— propagate constants and eliminate unreachable code.

— eliminate conditional branching between blocks in favor of conditional assign-
ments (i.e., LLVM’s select instructions which are similar to the ternary op-
erator ? in C). This step reduces the number of distinct paths through the
program. The transformation is no guarantee against an exponential blowup
of the number of paths of a program, but we have experienced that it kept the
number of distinct paths manageable.

— inline function calls where desired by the user.

While further LLVM optimization passes might have positive effects on veri-
fication efficiency, they tend to modify the control flow graphs considerably, thus

Relational Program Reasoning Using Compiler IR 9

disturbing the annotated synchronization similarities between the programs. Since
this may lead LLREVE astray, they have not been included in the implementation.

4.2 Synchronization Points and Breaking Control Flow Cycles

If the compiled program contained loops or iteration formulated using goto state-
ments, the resulting CFG is cyclic. Cycles are a challenge for deductive verification
because the number of required iterations is, in general, not known beforehand.

We break up cycles in the control flow by defining synchronization points, at
which we will abstract from the program state by means of predicates. The paths
between synchronization points are then cycle-free and can be handled easily. Syn-
chronization points are defined by labeling basic blocks of the CFG with unique
numbers n € N. Additionally, the entry and the exit of a function are considered
special synchronization points labeled with B and E. If every cycle in the CFG
contains at least one synchronization point, the CFG can be considered as the set
of all linear paths leading from one synchronization point directly to another. A
linear path is a sequence of basic blocks together with the transition conditions be-
tween them. Formally, it is a triple (n, 7, m) in which n and m denote the beginning
and end synchronization point of the segment and «(z,z’) is the two-state tran-
sition predicate between the synchronization points in which x are the variables
before and z’ after the transition. Since basic blocks are in SSA form, the tran-
sition predicate defined by a path is the conjunction of all traversed assignments
(as equalities) and transition conditions. The treatment of function invocation is
explained in Sect. 4.5.

4.3 Coupling and Coupling Predicates

Let in the following the two compared functions be called P and Q, and let zp, (resp.
xq) denote the local variables of P (resp. Q). Primed variables refer to post-states.

We assume that P and @Q are related to each other, in particular that the con-
trol and data flow through the functions is similar. This means that we expect
that there exist practicable coupling predicates describing the relation between cor-
responding states of P and Q. The synchronization points mark where the states
are expected to be coupled. If a function were compared against itself, for instance,
the coupling between two executions would be equality ranging over all variables
and all heap locations. For the analysis of two different programs, more involved
coupling predicates are, of course, necessary.

Formally, we introduce a coupling predicate Cy (zp,zq) for every synchroniza-
tion point index n. Note that these predicates have the variables of both programs
as free variables. Two functions are considered coupled, if they yield coupled traces
when fed with the same input values; coupled in the sense that the executions
pass the same sequence of synchronization points in the CFG and that at each
synchronization point, the corresponding coupling predicate is satisfied. See Fig. 1
for an illustration.

The coupling predicates Cg and Cg for the function entry and exit are special
in that they form the relational specification for the equivalence between P and
Q. For pure equivalence, Cg encodes equality of the input values and state, and

10 Moritz Kiefer et al.

ni ng oo E

CB AC’HI ;Ctr& CE
B ni ng . E
/ N4

Fig. 1: Illustration of coupled control flow of two fully synchronized programs

Cg of the result value and output state. Variations like conditional or relational
equivalence can be realized by choosing different formulas for Cg and Cg.

4.4 Coupling Predicates for Cyclic Control Flow

In the following, we outline the set of constraints that we generate for programs
with loops. If this set possesses a model, i.e., if there are formulas making the
constraint true when substituted for the coupling predicate placeholders C;, then
the programs fulfill their relational specification.

The first constraint encodes that every path leading from a synchronization
point to the next satisfies the coupling predicate at the target point. Let (n,r, m)
be a linear path in the CFG of P and (n, p, m) one for the same synchronization
points for Q. For each such pair of paths, we emit the constraint:

Cn(p, wq) A7 (ap, 2p) A plag,) = Crm(xp,75) - (1)

The above constraint only covers the case of strictly synchronized loops which
are iterated equally often. Yet, often the number of loop iterations differs between
revisions, e.g., if one loop iteration has been peeled in one of the programs. To
accommodate that, we allow one program, say P, to loop at a synchronization
point n more often than the other program.? Thus, P proceeds iterating the loop,
while @ stutters in its present state. For each looping path (n,7,n) in P, we emit
the constraint:

Cn(xp, 2q) A T(Tp,) A (/\Vw; ﬂp(xq,x;)) — Cn(zp, 7q) - (2)

(n,p,m)
in

The second conjunct in the premiss of the implication encodes that P iterates
from n to n, while the third captures that no linear path leads from n to n in Q
from initial value z4. The coupling predicate in the conclusion employs the initial
values x4, since we assume that the state of @ stutters.

Emitting (2) to accommodate loops that are not strictly synchronized adds to
the complexity of the overall constraint and may in practice prevent the solver from
finding a solution. We thus provide the user with the option to disable emitting (2),
if they are confident that strict synchronization is sufficient.

Finally, we have to encode that the control flow of P and @ remains syn-
chronized in the sense that it must not be possible that P and Q reach different

2 The situation is symmetric with the case for @ omitted here.

Relational Program Reasoning Using Compiler IR 11

synchronization points m and k when started from a coupled state at n.> For each
path (n,m,m) in P and (n,p,k) in Q with m # k, n # m, n # k, we emit the
constraint:

Crn(xp,xq) A T(zp, p) A p(2g, 74) — false . (3)

4.5 Coupling Predicates for Function Calls

Besides at synchronization points that abstract loops or iteration in general, cou-
pling predicates are also employed to describe the effects of corresponding function
invocations in the two programs. To this end, matching pairs of function calls in
the two CFGs are abstracted using mutual function summaries. A heuristic used
to match calls will be described later.

Mutual function summaries. Let f;, be a function called from the function P, z,
denote the formal parameters of fp, and ry, stand for the (optional) result returned
when calling f;,. Assume that there is an equally named function f; defined in the
program of Q. A mutual summary for f, and f; is a predicate Sum (zp,zq,rp,q)
that relationally couples the result values to the function arguments. If the function
accesses the heap, the heap appears as an additional argument and return value
of the function.

In our experiments, we found that it is beneficiary to additionally model an
explicit relational precondition Prey(xp,zq) of f. Although it does not increase ex-
pressiveness, the solvers found more solutions with precondition predicates present.
We conjecture that the positive effect is related to the fact that mutual summary
solutions are usually of the shape ¢(zp,zq) — ¥(rp,7q), and that making the pre-
condition explicit allows the solver to infer ¢ and i separately without the need
to infer the implication.

For every pair of paths (n,m,m) € P and (n,p,m) € @ that contain a single
call to f, we emit the following additional constraint:

Chn(zp, xq) A ﬂ(xp,x;) A p(xq, z;) — Preg(zp, xq) . (4)

in which zj, and z; denote the SSA variables used as the argument for the function
calls to f. The constraint demands that the relational precondition Prey must be
met when the callsites of f are reached in P and Q.

For every such pair of paths, we can now make use of the mutual summary by
assuming Sum ¢(x}, 23, 7p, 7). This means that for constraints emitted by (1)—(3),
the mutual summary of the callsite can be added to the premiss. The augmented
version of constraint (1) reads, for instance,

C’”(IP7IQ) A 7"(3317’ l‘;) A p(‘rQa ‘r/q) A Sumf(m;;vI;vrpv T‘I) — Cm(.it/p,.f:])) (5)

with rp and r4 the SSA variables that receive the result values of the calls.

The mutual summary also needs to be justified. For that purpose, constraints
are recursively generated for f, with the entry coupling predicate Cp = Pre; and
exit predicate Cp = Sum;.

The generalization to more than one function invocation is canonical.

3 This restriction releases us from the need to create coupling predicates for arbitrary combi-
nations of synchronization points. It has been of minor practical importance on the considered
examples where a one-to-one mapping of synchronization points could easily be specified.

12 Moritz Kiefer et al.

Ezample. To make the above clearer, let us look
at the encoding of the program in Listing 3
when verified against itself. Let C}‘;(nl,nz) and
C%(r1,72) be the given coupling predicates that
have to hold at the entry and exit of f. When en-
coding the function f, we are allowed to use Sumg Listing 3: £() calling gO
at the callsite but have to show that Preg holds.

Thus we get the following constraints:

int £(int n) {
return g(n-1);

¥

int g (int n) {
return n+1;

}

Ut W~

CfB(nl,’N,Q) Anl =n1—1An3 =na—1— Preg(ni,n3)

C’fB(nl,ng) An] =ni1—1An5 =n2—1A Sum(ni,nz,r1,r2) = Cﬁ;(rl,rg) .

To make sure that Prey and Sumg are a faithful abstraction for g, we have a new
constraint for g, which boils down to

Preg(ni,n2) = Sumg(ni,n2,n1 +1,n2 +1) .

At this point, the set of constraints is complete, and we can state the main
result:

Proposition 1 (Soundness) Let S be the set of constraints emitted by (1)—(5). If
the universal closure of S is satisfiable, then P and Q terminate in states with x;, and
:cfl satisfying C’E(x;,xfz) when they are executed in states with xp and xq satisfying
Cpg(zp,zq) and both terminate.

Matching function calls. For treatment using mutual summaries, the function
calls need to be combined into pairs of calls from both programs. Our goal is
to match as many function calls between the two programs as possible. To this
end, we look at any pair of possible paths from the two programs that start and
end at the same synchronization points. For each path, we consider the sequence
of invoked functions. To determine the optimal matching of function calls (i.e.,
covering as many calls as possible), an algorithm [26] for computing the longest
common (not necessarily continuous) subsequence among the sequences is applied.

As an example, consider the functions in Fig. 2. There are no cycles in the
control flow, so the only two synchronization points are the function entry and exit.
In Program 1, there are two paths corresponding to > 0 and x < 0 respectively.
In Program 2, there is only a single path. That gives us two possible path pairs
that we need to consider. The resulting longest matchings for the pairs are also
shown in the figure. Matched calls are abstracted using mutual summaries, while
unmatched calls have to be abstracted using conventional functional summaries.

An additional feature is that the user can request to inline a specific call or all
calls to a function with an inline pragma. The feature is especially important if
the callee function contains a loop that should be synchronized with a loop in the
caller function of the other program. The pragma can also be used to inline some
steps of a recursive call.

Relational Program Reasoning Using Compiler IR 13

int f(int x) { int f(int x) { g(int) —— g(int) g(int)
if (x > 0) { x = g(x); g(int) —— g(int) g(int)
x = g(x); x = g(x); h(int) g(int)
x = gx); x = g(x); h(int) h(int) — h(int)
} x = h(x); g(int) —— g(int) h(int) — h(int)
x = h(x); x = h(x); h(int) g(int)
x = h(x); return x; h(int)
x = g(x); }
return x;
}
Program 1 Program 2 Matching for x > 0 Matching for x < 0

Fig. 2: Illustration of function call matching

1 int f£(int n) {
2 int i = 0;
Z while (i < n) { Vn.relin(n) — inv(0,n)
i++;
5 } ' Vi,n.(i <nAinv(i,n)) = nv(i+ 1,n)
6 int r =i; Vi, n.(=(i < n) A inv(i,n)) — relout (7)
7 return r;
8 }
Listing 4: Function £ Fig. 3: Iterative encoding of £

Vn.relin(n) — invpre (0,) A
(Vr.inv(0,n,7) = invy(n,r))
Vi,n,7.(t < n A invpre(i,n) A tnv(i + 1,n,7)) — inv(i,n,)
Vi, n.(—(2 < n) A invpre (4, n) — nv (i, n, i)

v, r.(reli (n) A dnvp(n, 1)) — relout (1)

Fig. 4: Recursive encoding of £

If a function’s implementation is not available. A special case arises when
there is a call from both programs to a function for which we do not have access
to the sources. If such calls can be matched, there are two possibilities: We support
user-specified mutual summary annotations such that relational (and functional)
properties about libraries can be used as assumptions during verification. Alter-
natively, if no relational contract is at hand, the two calls are abstracted using the
canonical mutual summary Sumy : xp = xq — rp = rq stating that equal inputs
induce equal results. If a call cannot be matched, however, we have to use an un-
interpreted functional summary, losing all information about the return value and
the resulting heap. In most cases, this means that nothing can be proved.*

4.6 Alternative Loop Treatment as Tail Recursion

When developing our method, we explored two different approaches to deal with
iterative unstructured control flow.

4 Alternatively, it would also be possible to trade soundness for completeness and, e.g.,
assume that such a call does not change the heap.

14 Moritz Kiefer et al.

The first one models a program as a collection of mutually recursive functions
such that the function themselves do not have cyclic control flow. Loops must be
translated to tail recursion. This aligns with the approach presented by Hawblitzel
et al. in [18]. It is attractive since it is conceptually simple allowing a unified han-
dling of cyclic branching and function calls. However, our experiments have shown
that for our purposes the encoding did not work as well as the one presented
in Sect. 4.4 which handles loops using coupling predicates directly instead of by
translation into tail recursion. A possible explanation for this observation could be
that the number of arguments to the coupling predicates is smaller if (coupling)
invariants are used. For these predicates, it suffices to use those variables as ar-
guments which may be changed by the following code. The mutual summaries for
tail recursion require more variables and the return values as arguments.

To illustrate the two styles of encoding, we explain how the program in Listing 4
is encoded. For simplicity of presentation, we encode a safety property of a single
program. The point where the invariant inv has to hold is the loop header on
Line 3. rel;, is a predicate that has to hold at the beginning of f and reloyt is
the predicate that has to hold when f returns. In the recursive encoding (Fig. 4),
inv has three arguments, the local variables ¢ and n and the return value r. In
the iterative case (Fig. 3), the return value is not an argument, so inv only has
two arguments. The entry predicate invyre over the local variables ¢ and n has to
hold at every “call” to inv. The reasoning for having such a separate predicate has
already been explained in Section 4.5.

In the end, a combination of the two encodings proved the most promising:
We apply the iterative encoding to the function whose exit and entry predicates
have been given as relational specification explained in 4.3. All other functions
are modeled using the recursive encoding. Mutual summaries depend, by design,
on the input parameters as well as the output parameters whereas the relational
postcondition Cg usually only depends on the output parameters. Using an itera-
tive encoding for the other functions would require passing the input parameters
through every predicate to be able to refer to them when establishing the mutual
summary at the exit point. The advantage of an iterative encoding of having fewer
parameters in predicates is thereby less significant, and we employ the recursive
encoding. A special case arises when the toplevel function itself recurses. In this
case, we encode it twice: first using the iterative encoding, which then relies on
the recursive encoding for the recursive calls.

4.7 Modeling the Heap

The heap is modeled directly as an SMT array and the LLVM load and store
instructions are translated into the select and store functions in the SMT theory
of arrays. We assume that all load and store operations are properly aligned;
we do not support bit operations or, e.g., accessing the second byte of a 32 bit
integer. Struct accesses are resolved into loads and stores at corresponding offsets.
The logical handling of constraints with arrays requires quantifier reasoning and
introduces additional complexity. We handle such constraints following the lines
suggested by Bjgrner et al. in [8].

Relational Program Reasoning Using Compiler IR 15

4.8 Assumptions

The presented regression verification approach strives to be as automatic as pos-
sible. To achieve this goal, we make simplifying assumptions about the programs.

Integer data types are not modeled as fixed-width bitvectors but as mathemat-
ical, unbounded integers. Our analyses are correct as long as no integer operation
causes an overflow (or underflow). Likewise, for the analyses to be correct, pro-
grams must not show undefined behavior due to illegal memory accesses, division
by 0, etc. Furthermore, our approach does not prove program termination, but
silently assumes it.

While LLREVE focuses on regression verification, the above assumptions can
be checked by other static analyses. For example, program termination can be
checked by analyses such as by Falke et al. [12] or Giesl et al. [14].

Since LLREVE operates on compilation results produced by Clang, its verifica-
tion results also apply to the intermediate code representation. Thus architecture-
specific decisions made by the compiler play into the verification process (in par-
ticular fixing the bit-widths of integral types). Since we use the IR input rather on
an abstract level (e.g., treating integers as mathematical integers), these decisions
are less relevant. The verification results are faithful if one uses the same compi-
lation framework to produce the executable code; then they are even closer to the
actually executed code (as they make less assumptions about the compiler).

5 Exploiting Dynamic Analysis Data

The success of our relational verification approach relies on the capabilities of
the Horn solvers to infer coupling predicates. Since this inference is expensive in
practice, we developed two heuristic dynamic analysis techniques that improve
the overall process in regard to both its efficacy and efficiency. Both techniques
support static verification by exploiting data gathered during analysis of concrete
program executions.

The first technique aims at harmonizing the iteration structure of loops be-
tween the two programs. It refactors two programs whose control flows are less
correlated into two programs with more similar control flows. The second technique
extracts interesting predicates based on the observed pairs of program traces and
uses them as coupling predicate candidates for the general case. These candidates
are produced from patterns and as algebraic equations.

5.1 Trace Collection

For the success of the dynamic approaches, it is crucial to collect suitable dynamic
data from which the appropriate invariants can be extrapolated: In particular, the
input values for trace collection must be well-chosen. The tool supports choosing
the initial states either randomly or following a user-defined strategy. A fruitful
strategy is taking the initial states from a test suite accompanying the program.
The number of traces collected by LLREVE-DYNAMIC is controlled by both global
and per-trace resource limits. For instance, in the experiments presented below,

16 Moritz Kiefer et al.

1 int digl0(int n) { 1 int digl0(int n) {
2 int result = 1; 2 int result = 1;
3 n=n/ 10; 3
4 4 while (n > 0) {
5 while (n > 0) { 5 if (n < 10) return result;
6 result++; 6 if (n < 100) return result+1;
7 n /= 10; 7 if (n < 1000) return result+2;
8 ¥ 8 if (n < 10000) return result+3;
9 return result; 9 n /= 10000;
10 } 10 result += 4;
11 ¥
12 return result;
13}
(a) Original version (b) Optimized version

Fig. 5: Computing the number of digits in a decimal expansion of a non-negative number

efficiently detecting the best way to harmonize control flow was possible with ten
trace pairs, while synthesizing coupling invariants took from two to 50 trace pairs.

To obtain trace data, we implemented a flexible special-purpose interpreter for
the LLVM IR language. The alternative would have been to instrument the code
and run it. However, this would have not have been flexible enough, as (1) the
semantics of integers used in the instrumented code (bounded integers with fixed
bit-width) would have been different from the one used by the constraint solvers
(unbounded mathematical integers) resulting in inconsistencies, and (2) all traces
would have needed to begin at the beginning of a program. The interpreter allows
us also to start execution mid-program, which is needed to investigate counterex-
amples produced by a solver. The path that such a counterexample refers to starts
at some synchronization point, which might not be located at the beginning of a
program.

5.2 Harmonizing the Loop Iteration Structure

The rationale for harmonizing the loop iteration structure of two programs under
comparison is the following: Relational verification based on coupling predicates
works best if coupled states are similar. This similarity tends to increase if the
number of iterations of a pair of corresponding loops in the two compared programs
is equal (or almost equal).

We show how the differences in the iteration structure can be automatically re-
duced by applying code transformations to the two programs, namely loop peeling
and loop unrolling. Specifically, we try to transform the programs in such a way
that for each pair of corresponding loops the number of loop iterations is equal
in both programs. If this goal is achieved, the constraint clauses for loosely syn-
chronized loops can be removed, making the verification task easier for the Horn
constraint solver.

5.2.1 Loop Unrolling

The first harmonizing transformation that we support is automatic loop unrolling:
Consider the two C functions given in Fig. 5. They both compute the number of

Relational Program Reasoning Using Compiler IR 17

digits in the decimal expansion of a non-negative integer n. Program (a) repeatedly
divides by 10, while the optimized version (b) divides by 10,000 thus essentially
reducing the number of expensive division operations by a factor of 4.

Yet, the equivalence of (a) and (b) is not immediately obvious. Regression
verification as outlined earlier in this paper is theoretically possible but difficult
due to the programs’ different loop iteration structure. A coupling invariant would
have to relate states where the loop in the second program has terminated, while
the loop in the first one is still running. Such an invariant is more difficult or
even impossible to infer automatically as it must encode significantly more of the
functional aspects of the individual programs. In this case such an invariant would
require using non-linear arithmetic.

If it were possible to compare four iterations of (a) against one of (b), a cou-
pling predicate between the two programs would be easier to formulate and easier
to automatically infer, as we have shown in [13] for a manually unrolled version.
Requiring the user to specify the relationship of the loop iterations between the two
compared programs would not tie in with our general idea of performing regres-
sion verification as automatically as possible. Hence, we compute this relationship
heuristically by analyzing several execution traces of the two programs. We will
come back to how to compute the number of times to unroll in Sect. 5.2.3.

In LLREVE, the loop unrolling transformation is carried out on the intermediate
representation by duplicating basic blocks. On the level of C source code, the k-fold
loop unrolling for a loop with a side-effect-free condition cond can be represented
as follows:

while(cond) {

& if (cond) {body} else break;

while(cond) {body} UNRO:Lg() . .
k times

if(cond) {body} else break;}

5.2.2 Loop Peeling

The second harmonizing transformation that we support is loop peeling, a technique
often found in compiler optimization. It removes (i.e., peels) a constant number
of iterations from a loop and places them before or after the loop. Since peeling
iterations from the end of the loop generally requires non-trivial modifications of
the loop condition, we only peel iterations from the beginning of a loop.
We demonstrate the effect of loop peeling by

looking at the program in Listing 5, which com- Listing 5: An inefficient imple-
putes the n-th triangular number >"}'_, k. The mentation for triangular num-

. . b
first iteration of the loop actually has no effect, s
. . . . 1 int tria(int n) {
and the program is equivalent to its version where) int i=0:
line 2 is replaced by int i = 1. But then, these 3 int x = 0;
two versions beginning with i = Oresp.i = 1 are . Wh:{lj:(;.(w {
not strictly synchronized. The less efficient anal- 6 iy
ysis for loosely coupled loops has to be used. Yet, v i
. 8 return x;
if the first iteration of the loop in case of i = 0is 0o}

peeled, then the loops do have the same number
of iterations again.

18 Moritz Kiefer et al.

Algorithm 1 Deciding when to unroll and when to peel

Input List of count pairs S, = (a1,b1),..., (as, bs) for synchronization point n

ratio < % > ‘;—Z // avg. ratio of the number of iterations
factor < round(ratio + 3) // rounding with bias
if factor # 1 then
UNROLL(factor)
else
diff + max{a; — b; : 1 <1i < s} // mazimum difference in the number of iterations
PEEL(diff)
end if

Like loop unrolling, loop peeling in LLREVE is performed on LLVM basic
blocks. On C source code level, the k-fold peeling operation can be represented as
follows:

while(cond) {body} PEE:L(>k)

bool exit=false;
if(lexit && cond) { body } else exit=true;

k times

if (lexit && cond) { body } else exit=true;
while(lexit && cond) { body }

Note that instead of nesting k if-statements, we introduce an additional variable
exit. By means of this variable, it is possible to make every path through the
transformed code reach the loop. This is important, since only then can the peeled
program be coupled against the unpeeled version in which the loop is also always
reached.

5.2.8 Deciding When to Unroll and When to Peel

It remains to be explained how it is heuristically decided whether a loop should be
left untouched, unrolled or peeled, and by how many iterations this should be done.
The data used in this decision is gathered from traces obtained by interpreting both
programs on the same list of s test input values. The number of traversals through
synchronization points is recorded and stored in a list Sy, = (a1,b1),..., (as,bs)
for each synchronization point n. Here, a; is the number of traversals through
_mark(n) in the first program and b; in the second.

If the numbers of iterations is small, then it is difficult to decide whether the
numbers differ by an additive offset (which would call for peeling) or whether there
is a multiplicative factor between the numbers (in which case unrolling would be
appropriate). To remove the false impression gained from such instances, we ignore
data points where the number of iterations is below some threshold.

Algorithm 1 shows the procedure that decides if a program is unrolled or peeled.
For simplicity of presentation, we assume w.l.o.g. that a; > b;, i.e., that the first
program iterates through the synchronization point at least as often as the second
program.

First the average proportion ratio between the number of iterations for the two
programs is computed. In order to find an appropriate unrolling factor, this mean

Relational Program Reasoning Using Compiler IR 19

value needs to be rounded. Since the ratio of loop iterations cannot be expected to
be a constant, the value will be below the desired unrolling factor. Therefore, we
add a bias 0 < 8 < 1 before rounding. Our experiments have shown that g8 = 0.4
(which means, e.g., that values between 2.1 and 3.1 are rounded to 3) is a good
value.

Table 1 shows the ratios and differences for test inputs for the programs in
Fig. 5 and Listing 5. In case of the optimization of computing digits in (a), the
ratios are between 3 and 3.75, their average is 3.375. Rounding up is the appro-
priate thing to do here. In case (b) the quotient is very close to 1, so rounding up
to 2 (resulting in loop unrolling) is not wise. Instead (since the factor is 1), the
one loop iteration is peeled from the beginning of the loop.

T on a; b; Z—Z i n a; b; %’ a; —b;
1 102 12 4 3 1 10 10 9 1.11 1

2 108 13 4 3.25 2 100 100 99 1.01 1

3 104 14 4 35 3 1000 1000 999 1.001 1

4 10 15 4 3.75 4 10000 10000 9999 1.0001 1
(a) iteration table for Fig. 5 (b) iteration table for Listing 5

Table 1: Relationship of the number of iterations for test inputs

5.3 Finding Coupling Invariant Candidates

The key to regression verification is that the coupling predicates need not formally
capture what result the two programs compute but encode what the relationship
between the intermediate results is. If the programs are similar enough (e.g., after
a local bug fix), it can be expected that the coupling between the programs’ states
can be expressed in a fragment of the logic.

This allows us to follow the promising approach of limiting the search for
possible coupling invariants to specific and simple forms which can be explored
more efficiently. Our experiments show that this can improve the performance
of regression verification, both on the benchmarks from the C standard library
(shown in Table 2), and even more so on examples with loops (shown in Table 3).
Being based on the analysis of a finite set of execution traces, these methods only
produce possible invariant candidates; their verification is delegated to an SMT
solver.

We explored two complementary types of invariant candidate generation:

1. Polynomial invariants. Polynomial invariants are algebraic equations over lo-
cal integer variables. They do not include statements over heaps and cannot
express inequalities. However, they require no additional input from the user
(except for the maximal degree of the polynomials) and their computation is
more efficient than that for equivalent patterns.

2. User-provided patterns. The user can provide a collection of formula templates
whose instantiations are conditions over local variables and heaps. The patterns
can express a subset of first order logic over integers (including equalities,

20 Moritz Kiefer et al.

inequalities, quantifiers, ...). But they must be specified manually, and a large
number of patterns can slow down the invariant inference process significantly.

Invariant candidates of the two techniques can canonically be combined into a
single, stronger invariant candidate by composing them conjunctively.

The candidates identified by the proposed techniques are afterwards submitted
to an SMT solver for verification. To this end, the coupling predicate symbol C,
in the Horn constraints is replaced by the concrete candidate ¢, obtained for syn-
chronization point n. If the resulting formula (without uninterpreted predicates) is
not satisfied, a counterexample witnessing this effect may be returned. The data
from this counterexample can be used as an additional input value in another
round of dynamic analysis. This refines the candidates from verification attempt
to verification attempt. If the candidate cannot be made more precise within the
considered fragment, but is still not yet sufficient, we can incorporate the informa-
tion from dynamic analysis into the process of Horn constraint solving by adding
constraints of the form Cp, — ¢, to the set of generated Horn clauses. Thus, the
dynamically gathered candidate can contribute as a nucleus for the solution of the
coupling predicate in the static analysis.

As the counterexample may provide values for arbitrary synchronization points
within the program (not necessarily the entry point), our LLVM interpreter is able
to perform program simulation from any point within a program, using the memory
state encoded in the counterexample.

5.8.1 Disjunctive Invariant Candidates

Both invariant inference methods find a set of conditions whose conjunction holds
on all analyzed execution traces. However, we have found that in many cases, cou-
pling predicates need to distinguish between different cases within the invariant
which corresponds to disjunctive combinations of invariants. We use the following
heuristic approach to find disjunctive invariant candidates. The set of program
states collected from execution traces is partitioned according to the path the pro-
grams have taken. Each partition is then analyzed separately to infer an invariant.
Finally, the derived invariant candidates for the disjoint cases are combined dis-
junctively into a single invariant candidate for all cases.

Our implementation creates three separate invariants by distinguishing three
cases: The execution of both programs is synchronized or one program has reached
the end of a loosely synchronized loop while the other program continues looping.
The latter is separated in two separate cases depending on which program is still
looping.

5.3.2 Polynomial invariants

A polynomial (or algebraic) constraint in n integer variables z1, ..., zy is an atomic
formula of the form >, . ey,....en®st - ... - zp? = 0 for natural-number ex-
ponents e;. For the sake of comprehensibility, we limit the presentation here to
polynomials of degree 1, i.e., to equations of the form ap +) ;,, aiz; = 0. Our
implementation does not have this restriction. o

In search of one algebraic invariant (or several invariants) for a set of states
obtained from the analyzed execution traces, we can put up linear equations con-
straining the coefficients of the desired polynomial. Given the pair of program

Relational Program Reasoning Using Compiler IR 21

states at a synchronization point in which the local variables (of both programs)
(x1,...,2n) have the values (c1,...,cn) € Z" the equation ag + > ; «;,, aic; =0 is
added to the system of constraints on the coefficients. Letting ¢; ; denote the value
of variable j in equation 4, one obtains a set of linear equations on the coefficients:

ao
1lciq c12 -0 cin ar
1co1 c22 - can

2 =0, (6)
1 Cm,1 C2m *** Cm,n

an

in which the matrix is the multivariate Vandermonde matrix® of order 1 for the
data points given by the considered program states. The solution space, i.e., the
coefficient such that the linear polynomial is an invariant, is the kernel of this
matrix. The dimension of the kernel can be larger than one, if the variables are
linearly dependent (which is often the case in relational verification).

If one chooses any basis of the solution space, for each basis vector (cocy ... cn)
we create an algebraic constraint in the form of the equation co+c¢1 *x1+... +cn*
xn, = 0. This equation holds on the examined execution traces. These constraints
are then combined conjunctively to form the invariant candidate for the general
case.

For performance reasons, the implementation can optionally limit the search
space to polynomials of univariate summands (for each summand at most one e;
differs from 0). In practice, linear summands are sufficient in most cases.

5.8.8 User-provided Patterns

While polynomial invariants are the most important kind of invariants for equiva-
lence checking and similar tasks, they have two shortcomings: (1) they are limited
to equalities, and (2) they are limited to local integer variables and do not support
array and heap accesses. Inequalities are nonetheless, in our experience, required
in many practical instances of relational reasoning, even when the verification task
is equivalence checking (let alone monotonicity checking). The importance of heap
support is obvious, though its lack can, to some degree, be mitigated, if the rele-
vant heap locations are known a priori. In this case, they can be treated as local
variables and thereby made fit into the framework of polynomial invariants. This
reduction does now work in the general case, though.

Hence, we deploy a second, more flexible source for invariant candidates along-
side the polynomial engine. The main idea here is that candidates are built by
instantiating a set of predefined patterns (formulas with free variables). The set
of all possible instantiations in which the free variables are substituted by local
program variables is the initial set of candidates. These instances are checked in
the program states belonging to their corresponding synchronization points in the
execution traces.

5 Multiplication with a Vandermonde matrix evaluates a polynomial at a set of points and
can be used to find interpolating polynomials. For a vector (a1, ..., am) of values, the k-th row
of the univariate matrix of degree n reads (1 ayg ai ag) such that multiplication with
the coefficient vector (ag aj ... am)! evaluates the polynomial DDA a;x* for all oy;. We use
multivariate Vandermonde matrices of degree 1 here.

29 Moritz Kiefer et al.

Table 2: Performance with different solvers for the libc benchmarks

Run time with solver, seconds

Function Source ELDARICA Z3/DUALITY LLREVE-DYNAMIC
memccpy d/o 0.736 0.123 0.099
memchr d/o 0.338 0.080 0.073
memmem d/o 1.03 n/a n/a
memmove d/o 14.96 0.223 0.189
memrchr g/o 0.531 0.095 0.075
memset d/o 0.387 0.103 0.080
sbrk d/g 0.321 0.939 n/a
stpcpy d/o 0.311 0.053 0.051
strchr d/g t/o 0.545 t/o
strcmp d/g 0.901 0.093 0.108
strncmp g/o 1.64 0.133 t/o
strncmp d/g 1.869 0.196 0.076
strncmp d/o 0.917 0.138 0.108
strpbrk d/o t/o 0.184 0.100
strpbrk d/g 3.07 0.147 0.098
strpbrk g/o 4.93 0.176 0.097
swab d/o 10.33 n/a n/a

d=dietlibc, g=glibc, 0o=0OpenBSD libc.
t/o=timeout after 300 seconds.
n/a=unsupported because of external functions or custom preconditions
2 GHz i7-4750HQ CPU, 16 GB RAM.

The only limitation for the formulation of patterns is that any instantiation
must be evaluatable given variable and heap assignments. Our current implemen-
tation supports comparisons on integers, array access and equality, quantification
over bounded integer ranges and arbitrary Boolean combinations of these.

The surprisingly good performance of the “brute force” pattern method in
practice can be explained by two factors. First, we have found that a small num-
ber of patterns is sufficient to verify large classes of examples, since the polynomial
invariants already cover all equalities.® Second, the search space defined by trying
all possible pattern instantiations is limited by the number of live program vari-
ables at a synchronization point (i.e., variables that are used in code reachable
from this point), which is usually reasonably small.

6 Experiments

Our implementation of LLREVE and the dynamic extensions consists of ca. 17.3
KLOC of C++, building on LLVM version 3.9.0. It can be found online at https:
//github.com/mattulbrich/llreve.

In our experiments, we have proven equivalence across a sample of functions
from three different libc implementations: dietlibc [23], glibc [15], and the OpenBSD
libc [29]. Apart from the not yet automated placing of the synchronization marks,
the proofs happen without user interaction. The average runtimes of the proofs are
summarized in Table 2. One of the more complex examples, the function memmove (),

6 For the libc benchmarks presented below, the patterns heap; = heaps, heap,[] = - and
heaps[-] = - were sufficient. For the loop benchmarks, we used the patterns - > -, - > - and
- < 0.

Relational Program Reasoning Using Compiler IR 23

1 void *memmove(void *dst, 1 void *memmove(void *dstO,
2 const void *src, 2 const void *srcO,
3 size_t count) { 3 size_t length) {
4 char *a = dst; 4 char *dst = dstO;
5 const char *b = src; 5 const char *src = srcO;
6 6 size_t t;
7 7 if (length == 0 || dst == src)
8 8 goto done;
9 if (src !'= dst) { 9 if ((unsigned long)dst <
10 10 (unsigned long)src) {
11 11 t = length;
12 if (src > dst) { 12 if () {
13 while (count--) { 13 do {
14 __mark(0); 14 __mark(0);
15 *at+ = *xb++; 15 *xdst++ = *src++;
16 } 16 } while (--t);
17 } else { 17 }
18 a += count - 1; 18 } else {
19 b += count - 1; 19 src += length;
20 while (count--) { 20 dst += length;
21 __mark(1); 21 t = length;
22 *a-- = *b--; 22 if (t) {
23 } 23 do {
24 } 24 __mark(1);
25 ¥ 25 *--dst = *--src;
26 26 } while (--t);
27 27 }
28 return dst; 28 X
29 } 20 done:
30 return (dst0);
31)
(a) dietlibe (b) OpenBSD libe

Fig. 6: memmove ()

is shown in Fig. 6. It demonstrates the use of nested ifs, multiple loops with differ-
ent loop structures (while/do-while) and goto statements. While equally named
functions are implemented similarly in the different libraries, the control flow dif-
fers from implementation to implementation, which can be observed in fact that
non-trivial coupling invariants need to be inferred by LLREVE for the proofs.

Table 3: Performance with different solvers for artificial loop benchmarks

Run time with solver, seconds

Function ELDARICA Z3/DUALITY LLREVE-DYNAMIC
barthe 0.092 0.154 0.087
barthe2 0.099 0.140 0.095
barthe2-big 0.179 2.000 0.159
barthe2-big2 4.300 2.900 0.158
barthe2-big3 4.200 t/o 0.299
break 0.097 5.700 0.083
break-single 0.101 0.088 0.064
buglh 0.068 0.059 0.036
loop2 0.079 0.075 0.067
loop3 0.108 0.320 0.054
simple-loop 0.088 0.265 0.038

t/o=timeout after 10 seconds. 2 GHz i7-4750HQ CPU, 16 GB RAM.

24 Moritz Kiefer et al.

1 void send(short *to, 1 void send(short *to,

2 short *from, 2 short *from,

3 int count) { 3 int count) {

4 if (count <= 0) { 4 if (count <= 0) {

5 return; 5 return;

6 } 6 }

7 do { 7 unsigned n = (count + 7) / 8;

8 *to = *xfrom++; 8 switch (count %

9 } while (__mark(0) & 9 case 0:

10 (--count > 0)); 10 do {

11} 11 *to = *from++;
12 case 7: *to = xfrom++;
13 case 6: *to = xfrom++;
14 case 5: *xto = xfrom++;
15 case 4: xto = xfrom++;
16 case 3: *to = xfrom++;
17 case 2: *to = xfrom++;
18 case 1: *to = xfrom++;
19 } while (__mark(0) & (--n > 0));
20 ¥
21 }

(a) before (b) after

Fig. 7: Optimizing a loop with Duff’s device

Revisiting the memchr () example dis-
cussed in Section 2, the early implemen-
tation of memchr () in dietlibc is known
to have contained a bug (Listing 6). In
case of a found character, the return
value is one greater than expected. Un-
surprisingly, this implementation cannot
be proven equivalent to any of the other
two, and LLREVE produces a counterex- Listing 6: Bug in memchr ()
ample. While counterexamples in the
presence of heap operations in the program can be spurious (in the absence of
heap operations, counterexamples are always genuine), in this case, the counterex-
ample does demonstrate the problem.

void* memchr(const void *s,

int c,
size_t n) {

const char* t=s;

int i;

for (i=n; i; --i)

if (xt++==c)
return (char*)t;
return 0;

O OO0 Uk WN =

=

}

An interesting observation we made was that existentially quantified precondi-
tions might potentially be necessary, such as requiring the existence of a null byte
terminating a string. While techniques for solving existentially quantified Horn
clauses exist, e.g., by Beyene et al. [7], most solver implementations currently only
support universally quantified clauses. The libc implementations, however, were
sufficiently similar so that such preconditions were not necessary.

By discovering unroll factors using dynamic analysis we have been able to prove
that applying a specific form of loop unrolling called Duff’s device [10] does not
change the result of the program. The original and the transformed program are
shown in Fig. 7. To generate the execution traces random inputs have been used.
For the invariant inference we have used Z3. Discovering and applying the unroll
factor of 8 and proving the programs equivalent takes about 1.2s.

Relational Program Reasoning Using Compiler IR 25

7 Conclusion

We have shown how the automated relational reasoning approach presented in [13]
can be taken in its applicability from a basic fragment to the full C language stan-
dard w.r.t. the control flow. In this work, LLVM played a crucial rule in reducing
the complexity of a real-world language. We have successfully evaluated our ap-
proach on code actually used in production and were able to prove automatically
that many string-manipulation functions from different implementations of libc
are equivalent.

Moreover, we demonstrated how dynamic data gathered from recorded pro-
gram traces can be used to make the static verification more efficient and effective.

Acknowledgments

This work was partially supported by the German National Science Founda-
tion (DFG) under the IMPROVE APS project within the priority program SPP 1593
“Design For Future — Managed Software Evolution”.

References

1. Balliu, M., Dam, M., Guanciale, R.: Automating information flow analysis of low level
code. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’14, pp. 1080-1091. ACM (2014)

2. Banerjee, A., Naumann, D.A., Nikouei, M.: Relational logic with framing and hypothe-
ses. In: 36th TARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2016, December 13-15, 2016, Chennai, India, pp.
11:1-11:16 (2016). DOI 10.4230/LIPIcs.FSTTCS.2016.11. URL http://dx.doi.org/10.
4230/LIPIcs.FSTTCS.2016.11

3. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: Proceedings of the 4th International
Conference on Formal Methods for Components and Objects, FMCO’05, pp. 364—-387.
Springer-Verlag (2006)

4. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs. In:
M. Butler, W. Schulte (eds.) Proceedings, 17th International Symposium on Formal Meth-
ods (FM), Lecture Notes in Computer Science, vol. 6664, pp. 200-214. Springer (2011)

5. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: Asymmetric product programs for
relational program verification. In: Logical Foundations of Computer Science, Interna-
tional Symposium, LFCS 2013, San Diego, CA, USA, January 6-8, 2013. Proceedings,
pp. 29-43 (2013). DOI 10.1007/978-3-642-35722-0_3. URL http://dx.doi.org/10.1007/
978-3-642-35722-0_3

6. Beringer, L.: Relational decomposition. In: Proceedings of the 2nd International Con-
ference on Interactive Theorem Proving (ITP), Lecture Notes in Computer Science, vol.
6898, pp. 39-54. Springer (2011)

7. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified Horn clauses.
In: N. Sharygina, H. Veith (eds.) Computer Aided Verification - 25th International Confer-
ence, CAV 2013, Proceedings, Lecture Notes in Computer Science, vol. 8044, pp. 869—-882.
Springer (2013)

8. Bjgrner, N., McMillan, K.L., Rybalchenko, A.: On solving universally quantified Horn
clauses. In: F. Logozzo, M. Fahndrich (eds.) Static Analysis - 20th International Sympo-
sium, SAS 2013, Proceedings, Lecture Notes in Computer Science, vol. 7935, pp. 105-125.
Springer (2013)

9. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Relational verification through
Horn clause transformation. In: Static Analysis - 23rd International Symposium, SAS
2016, Edinburgh, UK, September 8-10, 2016, Proceedings, pp. 147-169 (2016). DOI
10.1007/978-3-662-53413-7_8. URL http://dx.doi.org/10.1007/978-3-662-53413-7_8

26

Moritz Kiefer et al.

10.

11.

12.

13.

14.

15.
16.
17.

18.

19.

20.

21.

22.

23.
. McMillan, K., Rybalchenko, A.: Computing relational fixed points using interpola-

25.

26.

27.

28.

29.
30.

Duff, T.: Explanation, please! Online posting. Available at https://www.lysator.liu.
se/c/duffs-device.html (1988)

Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao,
C.: The daikon system for dynamic detection of likely invariants. Sci. Comput. Pro-
gram. 69(1-3), 35-45 (2007). URL https://homes.cs.washington.edu/~mernst/pubs/
daikon-tool-scp2007.pdf

Falke, S., Kapur, D., Sinz, C.: Termination analysis of imperative programs using bitvector
arithmetic. In: Proceedings of the 4th International Conference on Verified Software: The-
ories, Tools, Experiments (VSTTE’12), pp. 261-277. Springer, Berlin, Heidelberg (2012)
Felsing, D., Grebing, S., Klebanov, V., Riimmer, P., Ulbrich, M.: Automating regression
verification. In: Proceedings of the 29th ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE 14, pp. 349-360. ACM (2014)

Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination proofs
with AProVE. In: V. van Oostrom (ed.) Rewriting Techniques and Applications, 15th
International Conference (RTA 2004), Proceedings, Lecture Notes in Computer Science,
vol. 3091, pp. 210-220. Springer (2004)

GNU C library. https://www.gnu.org/software/libc/ (2016)

Godlin, B., Strichman, O.: Regression verification. In: Proceedings of the 46th Annual
Design Automation Conference, DAC ’09, pp. 466-471. ACM (2009)

Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification frame-
work. In: D. Kroening, C.S. Pasareanu (eds.) Computer Aided Verification (CAV), Pro-
ceedings, Lecture Notes in Computer Science, vol. 9206, pp. 343—-361. Springer (2015)
Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebélo, H.: Mutual summaries: Unifying pro-
gram comparison techniques. In: Proceedings, First International Workshop on Intermedi-
ate Verification Languages (BOOGIE) (2011). Available at http://research.microsoft.
com/en-us/um/people/moskal/boogie2011/boogie2011_pg40.pdf

Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebélo, H.: Towards modularly comparing
programs using automated theorem provers. In: M.P. Bonacina (ed.) Automated Deduc-
tion - CADE-24 - 24th International Conference on Automated Deduction, 2013. Proceed-
ings, Lecture Notes in Computer Science, vol. 7898, pp. 282-299. Springer (2013)

Hoder, K., Bjgrner, N.: Generalized property directed reachability. In: Proceedings of
the 15th International Conference on Theory and Applications of Satisfiability Testing,
SAT’12, pp. 157-171. Springer-Verlag, Berlin, Heidelberg (2012)

Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebélo, H.: SymDiff: A language-agnostic
semantic diff tool for imperative programs. In: Proceedings of the 24th International
Conference on Computer Aided Verification, CAV’12, pp. 712-717. Springer-Verlag, Berlin,
Heidelberg (2012)

Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis &
transformation. In: Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-directed and Runtime Optimization, CGO ’04. IEEE Computer
Society (2004)

von Leitner, F.: diet libc. https://wuw.fefe.de/dietlibc/ (2016)

tion. Tech. Rep. MSR-TR-2013-6, Microsoft Research (2013). URL http://research.
microsoft.com/apps/pubs/default.aspx?id=180055

Merz, F., Falke, S., Sinz, C.: LLBMC: Bounded model checking of C and C++ programs
using a compiler IR. In: Proceedings of the 4th International Conference on Verified
Software: Theories, Tools, Experiments, VSTTE’12, pp. 146-161. Springer-Verlag, Berlin,
Heidelberg (2012)

Myers, E.ZW.: An O(ND) difference algorithm and its variations. Algorithmica 1(2), 251—
266 (1986)

Necula, G.C.: Translation validation for an optimizing compiler. SIGPLAN Not. 35(5),
83-94 (2000). DOI 10.1145/358438.349314. URL http://doi.acm.org/10.1145/358438.
349314

Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Dig: A dynamic invariant generator for
polynomial and array invariants. ACM Trans. Softw. Eng. Methodol. 23(4), 30:1-30:30
(2014). DOI 10.1145/2556782. URL http://doi.acm.org/10.1145/2556782

OpenBSD libe. http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/1ib/1libc/ (2016)
Partush, N., Yahav, E.: Abstract semantic differencing via speculative correlation. In:
Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, pp. 811-828. ACM (2014). DOI 10.
1145/2660193.2660245

Relational Program Reasoning Using Compiler IR 27

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Rakamaric, Z., Emmi, M.: SMACK: decoupling source language details from verifier im-
plementations. In: Computer Aided Verification - 26th International Conference, CAV
2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18-22, 2014. Proceedings, pp. 106-113 (2014). DOI 10.1007/978-3-319-08867-9_7. URL
http://dx.doi.org/10.1007/978-3-319-08867-9_7

Rimmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for Horn-clause verification.
In: Proceedings of the 25th International Conference on Computer Aided Verification,
CAV’13, pp. 347-363. Springer-Verlag, Berlin, Heidelberg (2013)

Sharma, R., Aiken, A.: From invariant checking to invariant inference using randomized
search. In: A. Biere, R. Bloem (eds.) Computer Aided Verification: 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 18-22, 2014. Proceedings, pp. 88—105. Springer International Publishing,
Cham (2014). DOI 10.1007/978-3-319-08867-9.6. URL http://dx.doi.org/10.1007/
978-3-319-08867-9_6

Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data driven
approach for algebraic loop invariants. In: M. Felleisen, P. Gardner (eds.) Program-
ming Languages and Systems: 22nd European Symposium on Programming, ESOP
2013, Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, pp. 574-592. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013). DOI 10.1007/978-3-642-37036-6_31. URL
http://dx.doi.org/10.1007/978-3-642-37036-6_31

Smith, E.W., Dill, D.L.: Automatic formal verification of block cipher implementations.
In: Proceedings of the 2008 International Conference on Formal Methods in Computer-
Aided Design, FMCAD ’08, pp. 6:1-6:7. IEEE Press, Piscataway, NJ, USA (2008). URL
http://dl.acm.org/citation.cfm?id=1517424.1517430

Stepp, M., Tate, R., Lerner, S.: Equality-based translation validator for LLVM. In: Pro-
ceedings of the 23™ international conference on Computer Aided Verification, pp. 737
742. Springer-Verlag, Berlin, Heidelberg (2011). URL http://www.cs.cornell.edu/~ross/
publications/eqsat/

Tristan, J.B., Govereau, P., Morrisett, G.: Evaluating value-graph translation validation
for llvm. SIGPLAN Not. 46(6), 295-305 (2011). DOI 10.1145/1993316.1993533. URL
http://doi.acm.org/10.1145/1993316.1993533

Ulbrich, M.: Dynamic logic for an intermediate language: Verification, interaction and re-
finement. Ph.D. thesis, Karlsruhe Institute of Technology (2013). http://nbn-resolving.
org/urn:nbn:de:swb:90-411691

Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine pro-
grams using widening to handle recurrences. ACM Trans. Program. Lang. Syst. 34(3),
11:1-11:35 (2012). DOI 10.1145/2362389.2362390

Verdoolaege, S., Palkovic, M., Bruynooghe, M., Janssens, G., Catthoor, F.: Experience
with widening based equivalence checking in realistic multimedia systems. J. Electronic
Testing 26(2), 279-292 (2010)

Welsch, Y., Poetzsch-Heffter, A.: Verifying backwards compatibility of object-oriented
libraries using Boogie. In: Proceedings of the 14th Workshop on Formal Techniques for
Java-like Programs, FT£JP '12, pp. 35-41. ACM (2012)

Zaks, A., Pnueli, A.: Covac: Compiler validation by program analysis of the cross-
product. In: FM 2008: Formal Methods, 15th International Symposium on Formal
Methods, Turku, Finland, May 26-30, 2008, Proceedings, pp. 35-51 (2008). DOI

10.1007/978-3-540-68237-0_5. URL http://dx.doi.org/10.1007/978-3-540-68237-0_5
Zaks, A., Pnueli, A.: Program analysis for compiler validation. In: Proceedings of the
8th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, PASTE ’08, pp. 1-7. ACM, New York, NY, USA (2008). DOI 10.1145/
1512475.1512477. URL http://doi.acm.org/10.1145/1512475.1512477

